Have a personal or library account? Click to login
A DNA Algorithm for Calculating the Maximum Flow of a Network Cover

References

  1. Adleman, L., Molecular computation of solutions to combinatorial problems, Science 266, 1021–1024 (1994).
  2. Ahuja, R. K., Magnanti, T. L., and Orlin, J. B., Network Flows: Theory, Algorithms, and Applications, Prentice-Hall, Upper Saddle River, NJ, 1993.
  3. Benenson, Y., DNA computes a square root, Nature Nanotechnology 6, 465–467 (2011).
  4. Błażewicz, J., Formanowicz, P., Urbaniak, R., DNA Based Algorithms for Some Scheduling Problems, In: Raidl, G. et al. Applications of Evolutionary Computing. EvoWorkshops 2003. LNCS 2611, Springer, Berlin, Heidelberg, 673–683 (2003).
  5. Braich, R. S., Chelyapov, N., Johnson, C., Rothemund, P. W. K., and Adleman, L., Solution of a 20-variable 3-SAT problem on a DNA compute, Science 296, 499–502 (2002).
  6. Condon, A., Designed DNA molecules: principles and applications of molecular nanotechnology, Nat. Rev. Genet. 7, 565–575 (2006).
  7. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to Algorithms (2nd edition). MIT Press, Cambridge/MA, 2001.
  8. Darehmiraki M., A New Solution for Maximal Clique Problem based Sticker Model, BioSystems 95, 145–149 (2009).
  9. Dodge, M., S. A. MirHassani, S. A., Hooshmand, F., Solving two-dimensional cutting stock problem via a DNA computing algorithm, Natural Computing 20, 145–159 (2021).
  10. Eghdami, H., Darehmiraki, M., Application of DNA computing in graph theory, Artificial Intelligence Review 38, 223–235 (2012).
  11. Elias, P., Feinstein, A., and Shannon, C. E., A note on the maximum flow through a network, IEEE Trans. Info. Theory. 2, 117–119 (1956).
  12. Faulhammer, D., Cukras, A. R., Lipton, R. J., and Landweber, L. F., Molecular computation: RNA solutions to chess problems, Proc. of Natl. Acad. Sci. USA 97, 1385–1389 (2000).
  13. Ford, L. R., Jr. and Fulkerson, D. R., Maximal flow through a network, Canad. J. Mathem. 8, 399–404 (1956).
  14. Han, A. and Zhu, D., DNA encoding method of weight for Chinese postman problem, In Proc. of IEEE Congress on Evolutionary Computation, IEEE Press, pp. 681–686 (2006).
  15. Ibrahim, Z., Towards solving weighted graph problems by direct-proportional length-based DNA computing, Research Report, IEEE Computational Intelligence Society (CIS) Walter J. Karplus Summer Research Grant (2004).
  16. Jeng, D. J.-F., Kim, I., and Watada, J., Bio-soft computing with fixed-length DNA to a group control optimization problem, Soft Computing 12, 223–228 (2008).
  17. Jungnickel, D., Graphs, Networks and Algorithms, Vol. 5 (2nd edition), Springer, Berlin (2005).
  18. Lee, J. Y., Shin, S. Y., Augh, S. J., Park, T. H., and T., Z. B., Temperature gradient-based DNA computing for graph problems with weighted edges, In DNA8: 8th Intern Workshop on DNA Based Computers, LNCS 2568, Springer, London, pp. 73–84 (2003).
  19. Lipton, R. J., DNA solution of hard computational problems, Science 268, 524–548 (1995).
  20. Liu, Q., Wang, L., Frutos, A. G., Condon, A. E., Corn, R. M., and Smith, L. M., DNA computing on surfaces, Nature 403, 175–179 (2000).
  21. Liu, Y., Xu, J., Pan, L., and Wang, S., DNA solution of a graph coloring problem, J. Chem. Inf. Comput. Sci. 42, 524–528 (2002).
  22. Martínez-Pérez, I. M., Gong, Z., Ignatova, Z., and Zimmermann, K. H., Solving the maximum clique problem via DNA hairpin formation, Technical Report 06.3, Computer Engerneering Department TUHH, Germany (2006).
  23. Nagy, N. and Akl, S. G., Aspects of biomolecular computing, Parallel. Proc. Lett. 17, 185–211 (2007).
  24. Narayanan, A. and Zorbalas, S., DNA algorithms for computing shortest paths In Proc. of Genetic Programming, 718–723 (1998).
  25. Ouyang, Q., Kaplan, P. D., Liu, S., and Libchaber, A., DNA solution of the maximal clique problem, Science 278, 446–449 (1997).
  26. Păun, G., Rozenberg, G., and Salomaa, A., DNA Computing: new computing paradigms. Springer, Berlin (1998).
  27. Ran, T., Kaplan, S., Shapiro, E., Molecular implementation of simple logic programs, Nature Nanotechnology 4, 642–648 (2009).
  28. Razzazi, M. and Roayaei, M., Using sticker model of DNA computing to solve domatic partition, kernel and induced path problems, Information Sciences 181, 3581–3600 (2011).
  29. Ren, X., Wang, X., Wang, Z., Wu, T., Parallel DNA Algorithms of Generalized Traveling Salesman Problem-Based Bioinspired Computing Model, International Journal of Computational Intelligence Systems 14, 228–237 (2021).
  30. Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N. V., Goodman, M. F., Rothemund, P. W. K., Adleman, L. M., A sticker-based model for DNA computation, Journal of Computational Biology 5, 615–629 (1998).
  31. Sager, J. and Stefanovic, D., Designing nucleotide sequences for computation: A survey of constraints, In DNA11: 11th Intern Workshop on DNA Based Computers, LNCS 3892, Springer, London, pp. 275–289 (2006).
  32. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., and Hagiya, M., Molecular computation by DNA hairpin formation, Science 288, 1223–1226 (2000).
  33. Stojanovic, M. N. and Stefanovic, D., A deoxyribozyme-based molecular automaton, Nat. Biotechnol. 21, 1069–1074 (2003).
  34. Tian, X., Liu, X., Zhang, H., Sun, M., Zhao, Y., A DNA algorithm for the job shop scheduling problem based on the Adleman-Lipton model, PLOS ONE 15, e0242083 (2020).
  35. Woods, D., Doty, D., Myhrvold, C., Hui, J., Zhou, F., Yin, P., Winfree, E., Diverse and robust molecular algorithms using reprogrammable DNA self-assembly, Nature 567, 366-372 (2019).
  36. Xu, J., Qiang, X., Zhang, K., Zhang, C., Yang, J., A DNA computing model for the graph vertex coloring problem based on a probe graph, Engineering 4, 61–77 (2018).
  37. Yamamoto, M., Matsuura, N., Shiba, T., Kawazoe, Y., and Ohuchi, A., Solutions of shortest path problems by concentration control, In DNA7: 7th Intern Workshop on DNA Based Computers, LNCS 2340, Springer, London, 203–212 (2002).
  38. Yang, J., Yin, Z., Tang, Z., Huang, K., Cui, J., Yang, X., Search computing model for the knapsack problem based on DNA origami, Materials Express 9, 553–562 (2019).
  39. Zimmermann, K.-H., Efficient DNA sticker algorithms for NP-complete graph problems, newblock Computer Physics Communications 144, 297–309 (2002).
DOI: https://doi.org/10.2478/fcds-2023-0021 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 483 - 506
Submitted on: Apr 12, 2022
Accepted on: Dec 5, 2023
Published on: Dec 21, 2023
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Andrea Sackmann, Kristelle Brown, Piotr Formanowicz, Kevin Morgan, Noor Kalsheker, Jon M. Garibaldi, Jacek Błażewicz, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.