Have a personal or library account? Click to login
Equilibrium stacks for a three-person game on a product of staircase-function continuous and finite strategy spaces Cover

Equilibrium stacks for a three-person game on a product of staircase-function continuous and finite strategy spaces

By: Vadim Romanuke  
Open Access
|Feb 2022

References

  1. [1] Agapova A., Madura J., Market uncertainty and earnings guidance, The Quarterly Review of Economics and Finance, 61, 2016, 97–111.10.1016/j.qref.2015.12.001
  2. [2] Edwards R. E., Functional Analysis: Theory and Applications, Holt, Rinehart and Winston, New York City, New York, USA, 1965.
  3. [3] Gogodze J., Revealed comparative advantage method for solving multicriteria decision-making problems, Foundations of Computing and Decision Sciences, 46 (1), 2021, 85–96.10.2478/fcds-2021-0006
  4. [4] Harsanyi J. C., Selten R., A General Theory of Equilibrium Selection in Games, The MIT Press, Cambridge, MA, 1988.
  5. [5] Hirshleifer D., Jiang D., DiGiovanni Y. M., Mood beta and seasonalities in stock returns, Journal of Financial Economics, 137 (1), 2020, 272–295.10.1016/j.jfineco.2020.02.003
  6. [6] Leinfellner W., Köhler E., Game theory, experience, rationality. Foundations of social sciences, economics and ethics. In honor of John C. Harsanyi, Springer, Netherlands, 1998.10.1007/978-94-017-1654-3
  7. [7] Loesche F., Ionescu T., Mindset and Einstellung Effect, Encyclopedia of Creativity, 3, 2020, 174–178.10.1016/B978-0-12-809324-5.23781-4
  8. [8] Meroni C., Pimienta C., The structure of Nash equilibria in Poisson games, Journal of Economic Theory, 169, 2017, 128–144.10.1016/j.jet.2017.02.003
  9. [9] Myerson R. B., Refinements of the Nash equilibrium concept, International Journal of Game Theory, 7 (2), 1978, 73–80.10.1007/BF01753236
  10. [10] Nisan N., Roughgarden T., Tardos É., Vazirani V. V., Algorithmic Game Theory, Cambridge University Press, Cambridge, UK, 2007.10.1017/CBO9780511800481
  11. [11] Nöldeke G., Peña J., The symmetric equilibria of symmetric voter participation games with complete information, Games and Economic Behavior, 99, 2016, 71–81.10.1016/j.geb.2016.06.016
  12. [12] Romanuke V. V., Acyclic-and-asymmetric payoff triplet refinement of pure strategy efficient Nash equilibria in trimatrix games by maximinimin and superoptimality, KPI Science News, 4, 2018, 38–53.10.20535/1810-0546.2018.4.131696
  13. [13] Romanuke V. V., Approximate equilibrium situations with possible concessions in finite noncooperative game by sampling irregularly fundamental simplexes as sets of players’ mixed strategies, Journal of Uncertain Systems, 10 (4), 2016, 269–281.
  14. [14] Romanuke V. V., Convergence and estimation of the process of computer implementation of the optimality principle in matrix games with apparent play horizon, Journal of Automation and Information Sciences, 45 (10), 2013, 49–56.10.1615/JAutomatInfScien.v45.i10.70
  15. [15] Romanuke V. V., Ecological-economic balance in fining environmental pollution subjects by a dyadic 3-person game model, Applied Ecology and Environmental Research, 17 (2), 2019, 1451–1474.10.15666/aeer/1702_14511474
  16. [16] Romanuke V. V., Finite approximation of continuous noncooperative two-person games on a product of linear strategy functional spaces, Journal of Mathematics and Applications, 43, 2020, 123–138.10.7862/rf.2020.9
  17. [17] Romanuke V. V., On the point of generalizing the Walsh functions to surfaces, Herald of Khmelnytskyi national university. Technical sciences, 6 (1), 2007, 187–193.
  18. [18] Romanuke V. V., Theoretic-game methods of identification of models for multistage technical control and run-in under multivariate uncertainties (a Dissertation for the Doctoral Degree of Technical Sciences in Speciality 01.05.02 Mathematical Modeling and Computational Methods), Vinnytsia National Technical University, Vinnytsia, Ukraine, 2014 (in Ukrainian).
  19. [19] Romanuke V. V., Theory of Antagonistic Games, New World — 2000, Lviv, 2010.
  20. [20] Romanuke V. V., Uniform sampling of fundamental simplexes as sets of players’ mixed strategies in the finite noncooperative game for finding equilibrium situations with possible concessions, Journal of Automation and Information Sciences, 47 (9), 2015, 76–85.10.1615/JAutomatInfScien.v47.i9.70
  21. [21] Romanuke V. V., Uniform sampling of the infinite noncooperative game on unit hypercube and reshaping ultimately multidimensional matrices of players’ payoff values, Electrical, Control and Communication Engineering, 8, 2015, 13–19.10.1515/ecce-2015-0002
  22. [22] Vorob’yov N. N., Game theory fundamentals. Noncooperative games, Nauka, Moscow, 1984. (in Russian)
  23. [23] Vorob’yov N. N., Game theory for economists-cyberneticists, Nauka, Moscow, 1985. (in Russian)
  24. [24] Yang J., Chen Y.-S., Sun Y., Yang H.-X., Liu Y., Group formation in the spatial public goods game with continuous strategies, Physica A: Statistical Mechanics and its Applications, 505, 2018, 737–743.10.1016/j.physa.2018.03.057
  25. [25] Yanovskaya E. B., Antagonistic games played in function spaces, Lithuanian Mathematical Bulletin, 3, 1967, 547–557.10.15388/LMJ.1967.19998
  26. [26] Young P., Zamir S. (eds.), Handbook of Game Theory. Volume 4, North Holland, 2015.
  27. [27] Zhao R., Neighbour G., Han J., McGuire M., Deutz P., Using game theory to describe strategy selection for environmental risk and carbon emissions reduction in the green supply chain, Journal of Loss Prevention in the Process Industries, 25 (6), 2012, 927–936.10.1016/j.jlp.2012.05.004
  28. [28] Zhou Z., Jin Z., Optimal equilibrium barrier strategies for time-inconsistent dividend problems in discrete time, Insurance: Mathematics and Economics, 94, 2020, 100–108.10.1016/j.insmatheco.2020.06.011
DOI: https://doi.org/10.2478/fcds-2022-0002 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 27 - 64
Submitted on: Jun 7, 2021
Accepted on: Dec 4, 2021
Published on: Feb 23, 2022
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Vadim Romanuke, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.