Have a personal or library account? Click to login
New Numerical Approach for Solving Abel’s Integral Equations Cover

New Numerical Approach for Solving Abel’s Integral Equations

Open Access
|Sep 2021

References

  1. [1] Avazzadeh Z, Shafiee B., Loghmani G.B., Fractional calculus for solving Abel’s integral equations using Chebyshev polynomials, Applied. Mathematical Science, 5, 45, 2011, 227-2216.
  2. [2] Brenke W. C., An application of Abel’s integral equation, American Mathematics Monthly, 2, 29,1922, 58-60.10.1080/00029890.1922.11986102
  3. [3] Caputo M., Fabrizio M., A new definition of fractional derivative without singular Kernel, Progress in Fractional Differentiation and Applications 1, 2015, 73–85.
  4. [4] Cimatti G., Application of the Abel integral equation to an inverse problem in thermoelectricity, Europen Journal of Applied Mathematics, 20, 2009, 519–529.10.1017/S095679250999009X
  5. [5] Cremers C.J., Birkebak R.C., Application of the Abel Integral Equation to Spectrographic Data, Applied Optics, 5, 1996, 1057-1064.10.1364/AO.5.00105720049010
  6. [6] Diethelm K., The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin Heidelberg, 2010.10.1007/978-3-642-14574-2
  7. [7] Ganji D.D., The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer, Physics Letter A, 355, 2006, 337-34.10.1016/j.physleta.2006.02.056
  8. [8] Gao W., Baskonus H.M., Shi L., New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV system, Advance in Difference Equation, 391, 2020, 1-11.10.1186/s13662-020-02831-6739693332834818
  9. [9] Gao W., Veeresha P., Baskonus H.M., Prakasha D.G., Kumar P., A new study of unreported cases of 2019-nCOV epidemic outbreaks, Chaos, Solitons and Fractals, 138, 2020, 109929.10.1016/j.chaos.2020.109929783453533519103
  10. [10] Gao W., Veeresha P., Prakasha D.G., Baskonus H.M., New numerical simulation for fractional Benney–Lin equation arising in falling film problems using two novel techniques, Numerical methods for partial differential equation, 37, 1, 2020, 210-243.10.1002/num.22526
  11. [11] Gao W., Veeresha P., Prakasha D.G., Baskonus H.M., Yel G., New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function, Chaos, Solitons and Fractals, 134, 2020, 109696.10.1016/j.chaos.2020.109696
  12. [12] Gao W., Veeresha P., Prakasha D.G., Baskonus H.M., Yel G., New Numerical Results for the Time-Fractional Phi-Four Equation Using a Novel Analytical Approach, Symmetry, 2020, 12, 478.10.3390/sym12030478
  13. [13] Gorenflo R., Vessella S., Abel Integral Equations: Analysis and Applications, Lecture Notes in Mathematics 1461, Springer-Verlag, Berlin, 1991.10.1007/BFb0084665
  14. [14] He J.H., Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, 178, 1999, 257-262.10.1016/S0045-7825(99)00018-3
  15. [15] Huang L, Huang Y., Fang-Li X., Approximate solution of Abel integral equation, Compters Mathematics with Applications, 56, 2008, 1748-1757.10.1016/j.camwa.2008.04.003
  16. [16] Ilhan E., Kıymaz O., A generalization of truncated M-fractional derivative and applications to fractional differential equations, Applied Mathematics and Nonlinear Sciences, 5, 1, 2020, 171–188.10.2478/amns.2020.1.00016
  17. [17] Kumar S., Sloan I.H., A new collocation-type method for Hammerstein integral equations, Journal of Mathematics and Computer Science, 48, 1987, 123-129.10.1090/S0025-5718-1987-0878692-4
  18. [18] Mirčeski V., Tomovski Z., Analytical solutions of integral equations for modeling of reversible electrode processes under voltammetric conditions, Journal of Electroanalytical Chemistry, 619, 620, 2008 164-168.10.1016/j.jelechem.2008.04.001
  19. [19] Munkhammar J. D., Fractional calculus and the Taylor–Riemann series, Undergrad Mathematics Journal, 6, 1, 2005, 6.
  20. [20] Pandey R. K., Singh O. P., Singh V. K., Efficient algorithms to solve singular integral equations of Abel type, Computers Mathematics with Applications, 57, 2009, 664-676.10.1016/j.camwa.2008.10.085
  21. [21] Podlubny I., Fractional differential equations. New York: Academic Press, 1999.
  22. [22] Singh J., Kumar D., Hammouch Z., Atangana A., A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316, 2018, 504–515.10.1016/j.amc.2017.08.048
  23. [23] Vanani S. K., Solevmani F., Tau approximate solution of weakly singular Volterra integral equations, Mathematical and Computer Modelling., 57, 2013, 3-4.10.1016/j.mcm.2012.07.004
  24. [24] Veeresha P., Prakasha D.G., Baskonus H.M., Yel G., An efficient analytical approach for fractional Lakshmanan-Porsezian-Daniel model, Mathematical methods in applied science, 43, 2020, 4136-4155.10.1002/mma.6179
  25. [25] Veeresha P., Baskonus H.M., Prakasha D.G., Gao W., Yel G., Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena, Chaos, Solitons and Fractals, 133, 2020, 109661.10.1016/j.chaos.2020.109661
  26. [26] Yousefi S.A., Numerical solution of Abel’s integral equation by using Legendre wavelets, Applied Mathematics and Computation, 175, 2006 574-580.10.1016/j.amc.2005.07.032
  27. [27] Wu J., Zhou Y., Hang C., A singularity free and derivative free approach for Abel integral equation in analyzing the laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy,167, 2020, 105791.10.1016/j.sab.2020.105791
  28. [28] Zhang Y., Cattani C., Yang X.J., Local Fractional Homotopy Perturbation Method for Solving Non-Homogeneous Heat Conduction Equations in Fractal Domain, Entropy, 17, 2015, 6753-6764.10.3390/e17106753
DOI: https://doi.org/10.2478/fcds-2021-0017 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 255 - 271
Submitted on: Jun 14, 2020
Accepted on: Mar 22, 2021
Published on: Sep 17, 2021
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Ayşe Anapalı Şenel, Yalçın Öztürk, Mustafa Gülsu, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.