Have a personal or library account? Click to login
Applying Data Envelopment Analysis Principle in Ordinal Multi Criteria Decision Analysis Cover

Applying Data Envelopment Analysis Principle in Ordinal Multi Criteria Decision Analysis

By: Moshe Kress  
Open Access
|Jun 2021

References

  1. [1] Alfares H. K. and Duffuaa, S. O. 2009. Assigning Cardinal Weights in Multi-Criteria Decision Making Based on Ordinal Ranking. J. Multi-Crit. Decis. Anal. 15: 125-133.10.1002/mcda.420
  2. [2] Allen, I. E. and Seaman C. A. 2007. Likert scale and data analyses. Quality Progress 64-65.
  3. [3] Atwater, B., and Uzdzinski, J. 2014. Wholistic Sustainment Maturity: The Extension of System Readiness Methodology across all Phasesof the Lifecycle of a Complex System. Procedia Computer Science 28, 601-609.
  4. [4] Belton, V. and Stewart, T. J. 2001. Multiple Criteria Decision Analysis: An Integreated Approach. Dordrecht: Kluwer Academic Publishing.10.1007/978-1-4615-1495-4_11
  5. [5] Charnes, A., Cooper, W. W. and Rhodes, E. 1978. Measuring the efficiency of decision making units. European Journal of Operational Research 2: 429-444.10.1016/0377-2217(78)90138-8
  6. [6] Cook, W. D. and Kress, M. 1991. A multiple criteria decision model with ordinal preference data. European Journal of Operational Research 54: 191-198.10.1016/0377-2217(91)90297-9
  7. [7] Cook, W. D. and Kress, M. 1996. An extreme-point approach for obtaining weighted ratings in qualitative multicriteria decision making. Naval Research Logistics 43: 519-531.10.1002/(SICI)1520-6750(199606)43:4<519::AID-NAV5>3.0.CO;2-A
  8. [8] Fasolo, B. and Bana e Costa, C. A. 2014. Tailoring Value Elicitation to Decision Makers’ Numeracy and Fluency: Expressing Value Judgments in Numbers or Words. Omega 44: 83-90.10.1016/j.omega.2013.09.006
  9. [9] Garcia-Lapresta, J. L. and Gonzales del Pozo, R. 2019. An Ordinal Multi-Criteria Decision-Making Procedure Under Imprecise Linguistic Assessments. European Journal of Operational Research 279 (1): 159-167.10.1016/j.ejor.2019.05.015
  10. [10] Garcia-Lapresta, J. L. and Perez-Roman, D. 2018. Aggregating Opinions in Non-Uniform Ordered Qualitative Scales. Applied Soft Computing 67: 652-657.10.1016/j.asoc.2017.05.064
  11. [11] Gomes, L. F. A. M., Mury, A. R. and Gomes, C. F. S. 1997. Multicriteria ranking with ordinal data. Systems Analysis Modelling Simulation 27 (2-3): 139-145.
  12. [12] Herrera, F., Herrera-Viedma, E. and Martinez, L. 2008. A Fuzzy Linguistic Methodology to Deal with Unbalanced Linguistic Term Sets. IEEE Transactions on Fuzzy Systems 16: 354-370.10.1109/TFUZZ.2007.896353
  13. [13] Herrera-Viedma, E. and Lopez-Herrera, A. G. 2007. A Model of an Information Retrieval System with Unbalanced Fuzzy Linguistic Information. International Journal of Intelligent Systems 22: 1197-1214.10.1002/int.20244
  14. [14] Koksalan, M., Karwan, M. H. and Zionts, S. 1988. An approach for solving discrete alternative multiple criteria problems involving ordinal data. Naval Research Logistics Quarterly 35: 625-642.10.1002/1520-6750(198812)35:6<625::AID-NAV3220350609>3.0.CO;2-E
  15. [15] Larichev, O. I., and Brown, R. 2000. Numerical and Verbal Decision Analysis: Comparison on Practical Cases. Journal of Multi-Criteria Decision Analysis 9: 263-274.10.1002/1099-1360(200011)9:6<263::AID-MCDA280>3.0.CO;2-W
  16. [16] Larichev, O. I. 1992. Cognitive validity in design of decision-aiding techniques. Journal of Multi-Criteria Decision Analysis 1 (3): 127-138.10.1002/mcda.4020010303
  17. [17] Likert, R. 1932. A Technique for the Measure of Attitudes. Archives of Psychology 22 (140): 1-55.
  18. [18] Marichal, J-L and Roubens, M. 2000. Determination of weights of interacting criteria from a reference set. European Journal of Operational Research 124 (3): 641-650.10.1016/S0377-2217(99)00182-4
  19. [19] Moshkovich, H.M., Mechitov, A.I., Olson, D.L. 2002. Ordinal judgments in multiattribute decision analysis. European Journal of Operational Research 137 625-641.10.1016/S0377-2217(01)00106-0
  20. [20] Punkka, A., and Salo, A. 2013. Preference Programming with incomplete ordinal information. European Journal of Operational Research 231 141-150.10.1016/j.ejor.2013.05.003
  21. [21] Roubens, M. 1982. Preference relations on actions and criteria in multicriteria decision making. European Journal of Operational Research 10: 51-55.10.1016/0377-2217(82)90131-X
  22. [22] Saaty, T. L. 1980. The Analytic Hierarchy Process. New York: McGrow Hill.10.21236/ADA214804
  23. [23] Salo, A. and Punkka, A. 2005. Rank inclusion in criteria hierarchies. European Journal of Operational Research 163 (2): 338-356.10.1016/j.ejor.2003.10.014
  24. [24] Xu, X. 2001. A multiple criteria ranking procedure based on distance between partial preorders. European Journal of Operational Research 133 (1): 69-80.10.1016/S0377-2217(00)00184-3
DOI: https://doi.org/10.2478/fcds-2021-0010 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 147 - 157
Submitted on: Feb 18, 2021
Accepted on: Mar 17, 2021
Published on: Jun 17, 2021
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Moshe Kress, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.