Have a personal or library account? Click to login
Transfer Learning Methods as a New Approach in Computer Vision Tasks with Small Datasets Cover

Transfer Learning Methods as a New Approach in Computer Vision Tasks with Small Datasets

Open Access
|Sep 2020

References

  1. [1] Bowyer K. W., Chawla N. V., Hall L. O., and Kegelmeyer W. P. SMOTE: synthetic minority over-sampling technique. CoRR, abs/1106.1813, 2011.
  2. [2] Chollet F. Xception: Deep learning with depthwise separable convolutions. CoRR, abs/1610.02357, 2016.10.1109/CVPR.2017.195
  3. [3] Garland M., Jaworek-Korjakowska J., Libal U., Bogyo M., and M. S. An automatic analysis system for high-throughput clostridium di cile toxin activity screening. Applied Science, 8(1512), 2018.10.3390/app8091512
  4. [4] He K., Zhang X., Ren S., and Sun J. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015.
  5. [5] Huang G., Liu Z., van der Maaten L., and Weinberger K. Q. Densely connected convolutional networks, 2016.10.1109/CVPR.2017.243
  6. [6] Jaworek-Korjakowska J., Kleczek P., and Gorgon M. Melanoma thickness prediction based on convolutional neural network with VGG-19 model transfer learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019.10.1109/CVPRW.2019.00333
  7. [7] Krizhevsky A., Sutskever I., and Hinton G. E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc.
  8. [8] Lin M., Chen Q., and Yan S. Network in network. International Conference on Learning Representations, 2014.
  9. [9] Lin T.-Y., Maire M., Belongie S., Bourdev L., Girshick R., Hays J., Perona P., Ramanan D., Zitnick C. L., and Dollár P. Microsoft coco: Common objects in context, 2014.10.1007/978-3-319-10602-1_48
  10. [10] Medium.com. Review: AlexNet, Ca eNet — winner of ILSVRC 2012 (image classification). https://medium.com/coinmonks/paper-review-of-alexnetcaenet-winner-in-ilsvrc-2012-image-classification-b93598314160, 2018. [Online; accessed 20.06.2020].
  11. [11] Pan S. J. and Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345–1359, Oct 2010.10.1109/TKDE.2009.191
  12. [12] Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M., Berg A. C., and Fei-Fei L. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.10.1007/s11263-015-0816-y
  13. [13] Simonyan K. and Zisserman A. Very deep convolutional networks for large-scale image recognition. ArXiv:1409.1556, 2014.
  14. [14] Szegedy C., Liu W., Jia Y., Sermanet P., Reed S. E., Anguelov D., Erhan D., Vanhoucke V., and Rabinovich A. Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition, 2014.10.1109/CVPR.2015.7298594
  15. [15] Tan C., Sun F., Kong T., Zhang W., Yang C., and Liu C. A survey on deep transfer learning. CoRR, abs/1808.01974, 2018.
  16. [16] Torrey L. and Shavlik J. Transfer learning. Handbook of Research on Machine Learning Applications, 01 2009.10.4018/978-1-60566-766-9.ch011
  17. [17] Yosinski J., Clune J., Bengio Y., and Lipson H. How transferable are features in deep neural networks? In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, pages 3320–3328, Cambridge, MA, USA, 2014. MIT Press.
DOI: https://doi.org/10.2478/fcds-2020-0010 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 179 - 193
Submitted on: Feb 29, 2020
Accepted on: Jul 29, 2020
Published on: Sep 18, 2020
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Andrzej Brodzicki, Michal Piekarski, Dariusz Kucharski, Joanna Jaworek-Korjakowska, Marek Gorgon, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.