References
- [1] Bowyer K. W., Chawla N. V., Hall L. O., and Kegelmeyer W. P. SMOTE: synthetic minority over-sampling technique. CoRR, abs/1106.1813, 2011.
- [2] Chollet F. Xception: Deep learning with depthwise separable convolutions. CoRR, abs/1610.02357, 2016.10.1109/CVPR.2017.195
- [3] Garland M., Jaworek-Korjakowska J., Libal U., Bogyo M., and M. S. An automatic analysis system for high-throughput clostridium di cile toxin activity screening. Applied Science, 8(1512), 2018.10.3390/app8091512
- [4] He K., Zhang X., Ren S., and Sun J. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015.
- [5] Huang G., Liu Z., van der Maaten L., and Weinberger K. Q. Densely connected convolutional networks, 2016.10.1109/CVPR.2017.243
- [6] Jaworek-Korjakowska J., Kleczek P., and Gorgon M. Melanoma thickness prediction based on convolutional neural network with VGG-19 model transfer learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019.10.1109/CVPRW.2019.00333
- [7] Krizhevsky A., Sutskever I., and Hinton G. E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc.
- [8] Lin M., Chen Q., and Yan S. Network in network. International Conference on Learning Representations, 2014.
- [9] Lin T.-Y., Maire M., Belongie S., Bourdev L., Girshick R., Hays J., Perona P., Ramanan D., Zitnick C. L., and Dollár P. Microsoft coco: Common objects in context, 2014.10.1007/978-3-319-10602-1_48
- [10] Medium.com. Review: AlexNet, Ca eNet — winner of ILSVRC 2012 (image classification). https://medium.com/coinmonks/paper-review-of-alexnetcaenet-winner-in-ilsvrc-2012-image-classification-b93598314160, 2018. [Online; accessed 20.06.2020].
- [11] Pan S. J. and Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345–1359, Oct 2010.10.1109/TKDE.2009.191
- [12] Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M., Berg A. C., and Fei-Fei L. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.10.1007/s11263-015-0816-y
- [13] Simonyan K. and Zisserman A. Very deep convolutional networks for large-scale image recognition. ArXiv:1409.1556, 2014.
- [14] Szegedy C., Liu W., Jia Y., Sermanet P., Reed S. E., Anguelov D., Erhan D., Vanhoucke V., and Rabinovich A. Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition, 2014.10.1109/CVPR.2015.7298594
- [15] Tan C., Sun F., Kong T., Zhang W., Yang C., and Liu C. A survey on deep transfer learning. CoRR, abs/1808.01974, 2018.
- [16] Torrey L. and Shavlik J. Transfer learning. Handbook of Research on Machine Learning Applications, 01 2009.10.4018/978-1-60566-766-9.ch011
- [17] Yosinski J., Clune J., Bengio Y., and Lipson H. How transferable are features in deep neural networks? In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, pages 3320–3328, Cambridge, MA, USA, 2014. MIT Press.