Have a personal or library account? Click to login
Numerical Solution of SDRE Control Problem – Comparison of the Selected Methods Cover

Numerical Solution of SDRE Control Problem – Comparison of the Selected Methods

Open Access
|Jun 2020

References

  1. [1] Arnold, W.F., III and A.J. Laub, “Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations,” (1982), Proc. IEEE®, pp. 1746-1754.
  2. [2] Banks, H.T., Lewis, B.M. and Tran, H.T., “Nonlinear feedback controllers and compensators: a state-dependent Riccati equation approach”, (2007), Computational Optimization and Applications, Vol. 37 No. 2, pp. 177-218.
  3. [3] Geranmehr B., Vafaee K., Nekoo S. R., Finite-horizon servo SDRE for super-maneuverable aircraft and magnetically-suspended CMGs, (2016) Journal of Aerospace Engineering, Vol 230, pp 1075 - 109310.1177/0954410015603076
  4. [4] Cloutier, J.R. and Stansbery, D.T. (2001), “Nonlinear, hybrid bank-to-turn/skid-to-turn autopilot design”, Proceedings of the AIAA Guidance, Navigation, and Control Conference,Montreal, AIAA, Reston.10.2514/6.2001-4158
  5. [5] Çimen T. “State-dependent Riccati equation (SDRE) control: a survey” (2008) In Proceedings of the 17th IFAC World Congress, 3761–3775.10.3182/20080706-5-KR-1001.00635
  6. [6] Erdem, E.B. and Alleyne, A.G. (1999), “Globally stabilizing second-order nonlinear systems by SDRE control”, Proceedings of the American Control Conference, San Diego, CA, IEEE, Los Alamitos.
  7. [7] Feitzinger F., Hylla T., Sachs E. W., Inexact Kleinman–Newton Method for Riccati Equations, SIAM J. MATRIX ANAL. APPL., 2009, 272–288.10.1137/070700978
  8. [8] Cloutier J. R., D’Souza C. N., Mracek C. P., Nonlinear regulation and nonlinear H, control via the state-dependent Riccati equation technique; part 1, theory; part 2, examples. (1996), In Proceedings of the International Conference on Nonlinear Problems in Aviation and Aerospace. Available through University Press, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114
  9. [9] Morris K., Navasca C., “Iterative Solution of Algebraic Riccati Equations using a Modified Newton-Kleinman Method”, (2004), in Proc. Mathematical Theory of Networks and Systems
  10. [10] Korayem, M.H. and Nekoo, S.R. (2015), “Finite-time state-dependent Riccati equation for time-varying nonaffine systems: rigid and flexible joint manipulator control”, ISA Transactions, Vol. 54, pp. 125-144.10.1016/j.isatra.2014.06.006
  11. [11] Mracek, C.P. and Cloutier, J.R. (1998), “Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method”, International Journal of Robust and Nonlinear Control, Vol. 8 Nos 4/5, pp. 401-433.10.1002/(SICI)1099-1239(19980415/30)8:4/5<401::AID-RNC361>3.0.CO;2-U
  12. [12] Park C., Scheeres D.J.: “Determination of optimal feedback terminal controllers for general boundary conditions using generating functions” (2006), Automatica 42, 869–87510.1016/j.automatica.2006.01.015
  13. [13] Palumbo, N.F. and Jackson, T. (1999), “Development of a fully integrated missile guidance and control system: a state-dependent Riccati differential equation approach”, Proceedings of the Conference on Control Applications, IEEE, HI, Los Alamitos.
  14. [14] Pearson, J.D. (1962), “Approximation methods in optimal control”, Journal of Electronics and Control, Vol. 13 No. 5, pp. 453-469.10.1080/00207216208937454
  15. [15] Menon P. K., Lam T., Crawford L. S., Cheng V. H. L., “Real-Time Computational Methods for SDRE Nonlinear Control of Missiles” (2002), Proc. of the 2002 American Control Conference
  16. [16] Shankar P., Yedavalli R. K., Doman D. B., “Dynamic inversion via state dependent Riccati equation approach: application to flight vehicles”,(2003), In AIAA Guidance, Navigation, and Control Conference and Exhibit, volume 5361. AIAA, Austin, Texas
  17. [17] Stepien S.J., Superczynska P., Dobrowolski D., Dobrowolski J., “SDRE-based high performance feedback control for nonlinear mechatronic systems”, (2019) Compel – The international journal for computation and mathematics in electrical and electronic engineering, Vol 38, No 4, pp. 1164 - 1176
  18. [18] Wernli, A. and Cook, G., “Suboptimal control for the nonlinear quadratic regulator problem”, Automatica, (1975), Vol. 11 No. 1, pp. 75-84.
DOI: https://doi.org/10.2478/fcds-2020-0006 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 79 - 95
Submitted on: Dec 28, 2019
Accepted on: Mar 30, 2020
Published on: Jun 29, 2020
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Krzysztof Hałas, Eugeniusz Krysiak, Tomasz Hałas, Sławomir Stępień, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.