Have a personal or library account? Click to login
Comparison of Machine Learning Models to Predict Risk of Falling in Osteoporosis Elderly Cover

References

  1. [1] Barry E., Galvin R., Keogh C., Horgan F., Fahey T., Is the Timed Up and Go test a useful predictor of risk of falls in community dwelling older adults: a systematic review and meta-analysis, BMC geriatrics, 14, 1, 2014, doi:10.1186/1471-2318-14-14.10.1186/1471-2318-14-14392423024484314
  2. [2] Beauchet O., Freiberger E., Annweile, C., Kressig R. W., Herrmann F. R., Allali G., Test-retest reliability of stride time variability while dual tasking in healthy and demented adults with frontotemporal degeneration, Journal of neuroengineering and rehabilitation, 8, 1, 2011, doi:10.1186/1743-0003-8-37.10.1186/1743-0003-8-37315672621745370
  3. [3] Bruijn S. M., Meijer O. G., Beek P. J., van Dieën J. H., Assessing the stability of human locomotion: a review of current measures, Journal of the Royal Society Interface,10, 83, 2013, doi:10.1098/rsif.2012.0999.10.1098/rsif.2012.0999364540823516062
  4. [4] Callisaya M. L., Blizzard L., McGinley J. L., Srikanth V. K., Risk of falls in older people during fast-walking - The TASCOG study, Gait and Posture, 36, 3, 2012, 510–515, doi:10.1016/j.gaitpost.2012.05.003.10.1016/j.gaitpost.2012.05.00322682610
  5. [5] Cuaya G., Muñoz-Meléndez A., Morales E. F. A minority class feature selection method, in: C. San Martin, S. W. Kim (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2011, Springer, Berlin, 2011, 417–424.10.1007/978-3-642-25085-9_49
  6. [6] Cuaya G., Muñoz-Meléndez A., Carrera L. N., Morales E. F., Quiñones I., Pérez A. I., Alessi A., A dynamic Bayesian network for estimating the risk of falls from real gait data, Medical and Biological Engineering and Computing, 51, 1–2, 2013, 29–37, doi:10.1007/s11517-012-0960-2.10.1007/s11517-012-0960-223065654
  7. [7] Drover D., Howcroft J., Kofman J., Lemaire E. D., Faller Classification in Older Adults Using Wearable Sensors Based on Turn and Straight-Walking Accelerometer-Based Features, Sensors, 17, 6, 2017, 13-21, doi:10.3390/s17061321.10.3390/s17061321549229328590432
  8. [8] Gervásio F. M., Santos G. A., Ribeiro D. M., Menezes R., Falls risk detection based on spatiotemporal parameters of three-dimensional gait analysis in healthy adult women from 50 to 70 years old, Fisioterapia e Pesquisa, 23, 4, 2016, 358-364, https://dx.doi.org/10.1590/1809-2950/15661923042016.10.1590/1809-2950/15661923042016
  9. [9] Hamacher D., Schega L., Towards the importance of minimum toe clearance in level ground walking in a healthy elderly population, Gait & Posture, 40, 4, 2014, 727–729, doi:10.1016/j.gaitpost.2014.07.016.10.1016/j.gaitpost.2014.07.01625128155
  10. [10] Hamacher D., Hamacher D., Taylor W. R., Singh N. B., Schega L., Towards clinical application: Repetitive sensor position re-calibration for improved reliability of gait parameters, Gait & Posture, 39, 4, 2014, 1146–1148, doi:10.1016/j.gaitpost.2014.01.020.10.1016/j.gaitpost.2014.01.02024602974
  11. [11] Hassoun M., Fundamentals of Artificial Neural Networks, MIT Press, Cambridge, MA, United States, 1999.
  12. [12] Howcroft J., Kofman J., Lemaire E. D., Review of fall risk assessment in geriatric populations using inertial sensors, Journal of NeuroEngineering and Rehabilitation, 10, 1, 2013, 1–12, doi:Artn 91\nDoi 10.1186/1743-0003-10-91.10.1186/1743-0003-10-91375118423927446
  13. [13] Kabeshova A., Launay C. P., Gromov V. A., Annweiler C., Fantino B., Beauchet O., Artificial Neural Network and Falls in Community-Dwellers: A New Approach to Identify the Risk of Recurrent Falling?, Journal of the American Medical Directors Association,16, 4, 2015, 277–281.10.1016/j.jamda.2014.09.01325444572
  14. [14] Kelsey J. L., Procter-Gray E., Berry S. D., Hannan M. T., Kiel D. P., Lipsitz L. a., Li W., Reevaluating the implications of recurrent falls in older adults: Location changes the inference, Journal of the American Geriatrics Society, 60, 3, 2012, 517–524, doi:10.1111/j.1532-5415.2011.03834.x.10.1111/j.1532-5415.2011.03834.x330297122283236
  15. [15] Lai D. T. H., Begg R. K., Palaniswami M., SVM Models for Diagnosing Balance Problems Using Statistical Features of the Mtc Signal, International Journal of Computational Intelligence and Applications, 7, 3, 2008, 317–331, doi:10.1142/S1469026808002314.10.1142/S1469026808002314
  16. [16] Lindsey C., Brownbill R. A., Bohannon R. A., Ilich J. Z., Association of physical performance measures with bone mineral density in postmenopausal women, Archives of Physical Medicine and Rehabilitation, 86, 6, 2005, 1102–1107, doi:10.1016/j.apmr.2004.09.028.10.1016/j.apmr.2004.09.02815954047
  17. [17] Livingston F., Implementation of Breiman’s Random Forest Machine Learning Algorithm, Machine Learning, 2005, 1-13.
  18. [18] McGough E. L., Logsdon R. G., Kelly V. E., Teri L., Functional Mobility Limitations and Falls in Assisted Living Residents With Dementia, Journal of Geriatric Physical Therapy, 36, 1, 2012, doi:10.1519/JPT.0b013e318268de7f.10.1519/JPT.0b013e318268de7f22976811
  19. [19] Nait A., Englebienne G, van Schooten K. S., Pijnappels M., Kröse B., Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry, Sensors, 18, 2018, 1-14.10.3390/s18051654598119929786659
  20. [20] Perera S., Mody S. H., Woodman R. C., Studenski S. A., Meaningful change and responsiveness in common physical performance measures in older adults, Journal of the American Geriatrics Society, 54, 5, 2006, 743–749, doi:10.1111/j.1532-5415.2006.00701.x.10.1111/j.1532-5415.2006.00701.x16696738
  21. [21] Pfortmueller C., Reducing fall risk in the elderly: risk factors and fall prevention. Minerva Med, 105, 2014, 275–281.
  22. [22] Phelan E. A., Mahoney J. E., Voit J. C., Stevens J. A., Assessment and Management of Fall Risk in Primary Care Settings, Medical Clinics of North America, 99, 2, 2015, 281–293, doi:10.1016/j.mcna.2014.11.004.10.1016/j.mcna.2014.11.004470766325700584
  23. [23] Rong-En F., Pai-Hsuen C., Chih-Jen L., Working Set Selection Using Second Order Information for Training Support Vector Machines, Journal Machine Learning Research, 6, 2005, 1889–1918.
  24. [24] Smith M. I., de Lusignan S., Mullett D., Correa A., Tickner J., Jones S., Predicting Falls and When to Intervene in Older People: A Multilevel Logistical Regression Model and Cost Analysis, PloS one, 11, 7, 2016, doi:10.1371/journal.pone.0159365.10.1371/journal.pone.0159365495775627448280
  25. [25] Webster K. E., Wittwer J. E., Feller, J. A., Validity of the GAITRite?? walkway system for the measurement of averaged and individual step parameters of gait, Gait & Posture, 22, 4, 2005, 317–321, doi:10.1016/j.gaitpost.2004.10.005.10.1016/j.gaitpost.2004.10.00516274913
DOI: https://doi.org/10.2478/fcds-2020-0005 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 66 - 77
Submitted on: Sep 24, 2019
Accepted on: Apr 2, 2020
Published on: Jun 29, 2020
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 German Cuaya-Simbro, Alberto-Isaac Perez-Sanpablo, Angélica Muñoz-Meléndez, Ivett Quiñones Uriostegui, Eduardo-F. Morales-Manzanares, Lidia Nuñez-Carrera, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.