Have a personal or library account? Click to login
Convolutional and Recurrent Neural Networks for Face Image Analysis Cover

Convolutional and Recurrent Neural Networks for Face Image Analysis

Open Access
|Aug 2019

References

  1. [1] Bahdanau, D., Cho, K. and Bengio, Y. 2014, ‘Neural machine translation by jointly learning to align and translate’, arXiv preprint arXiv:1409.0473.
  2. [2] Belhumeur, P. N., Jacobs, D. W., Kriegman, D. J. and Kumar, N. 2013, ‘Localizing parts of faces using a consensus of exemplars’, IEEE transactions on pattern analysis and machine intelligence 35(12), 2930–2940.10.1109/TPAMI.2013.23
  3. [3] Cao, X., Wei, Y., Wen, F. and Sun, J. 2014, ‘Face alignment by explicit shape regression’, International Journal of Computer Vision 107(2), 177–190.10.1007/s11263-013-0667-3
  4. [4] Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine learning, 20(3), pp.273-297.10.1007/BF00994018
  5. [5] Dalal, N. and Triggs, B., 2005, June. Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 886-893). IEEE.10.1109/CVPR.2005.177
  6. [6] Karpathy, A. and Fei-Fei, L. 2015, Deep visual-semantic alignments for generating image descriptions, in ‘Proceedings of the IEEE conference on computer vision and pattern recognition’, pp. 3128–3137.10.1109/CVPR.2015.7298932
  7. [7] King, D.E., 2009. Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research, 10(Jul), pp.1755-1758.
  8. [8] Kingma, D. P. and Ba, J. 2014, ‘Adam: A method for stochastic optimization’, arXiv preprint arXiv:1412.6980.
  9. [9] Kowalski, M., Naruniec, J. and Trzcinski, T. 2017, ‘Deep alignment network: A convolutional neural network for robust face alignment’, CoRR abs/1706.01789. URL: http://arxiv.org/abs1706.0178910.1109/CVPRW.2017.254
  10. [10] Kowalski, M. and Naruniec, J. 2016, ‘Face alignment using k-cluster regression forests with weighted splitting’, IEEE Signal Processing Letters 23(11), 1567–1571.10.1109/LSP.2016.2608139
  11. [11] Lee, D., Park, H. and Yoo, C. D. 2015, Face alignment using cascade gaussian process regression trees, in ‘Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition’, pp. 4204–4212.10.1109/CVPR.2015.7299048
  12. [12] Le, V., Brandt, J., Lin, Z., Bourdev, L. and Huang, T. S. 2012, Interactive facial feature localization, in ‘European Conference on Computer Vision’, Springer, pp. 679–692.10.1007/978-3-642-33712-3_49
  13. [13] Ren, S., Cao, X., Wei, Y. and Sun, J. 2014, Face alignment at 3000 fps via regressing local binary features, in ‘Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition’, pp. 1685–1692.10.1109/CVPR.2014.218
  14. [14] Sagonas, C., Tzimiropoulos, G., Zafeiriou, S. and Pantic, M. 2013, 300 faces in-the-wild challenge: The first facial landmark localization challenge, in ‘Computer Vision Workshops (ICCVW), 2013 IEEE International Conference on’, IEEE, pp. 397–403.10.1109/ICCVW.2013.59
  15. [15] Sebe, N. and Lew, M.S., 2013. Robust computer vision: Theory and applications (Vol. 26). Springer Science & Business Media.
  16. [16] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. and Potts, C. 2013, Recursive deep models for semantic compositionality over a sentiment treebank, in ‘Proceedings of the 2013 conference on empirical methods in natural language processing’, pp. 1631–1642.
  17. [17] Trigeorgis, G., Snape, P., Nicolaou, M. A., Antonakos, E. and Zafeiriou, S. 2016, Mnemonic descent method: A recurrent process applied for end-to-end face alignment, in ‘Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition’, pp. 4177–4187.10.1109/CVPR.2016.453
  18. [18] Wen, Z. and Huang, T.S., 2006. 3D Face Processing: Modeling, Analysis and Synthesis (Vol. 8). Springer Science & Business Media.
  19. [19] Xiao, S., Feng, J., Xing, J., Lai, H., Yan, S. and Kassim, A. 2016, Robust facial landmark detection via recurrent attentive-refinement networks, in ‘European conference on computer vision’, Springer, pp. 57–72.10.1007/978-3-319-46448-0_4
  20. [20] Xiong, X. and De la Torre, F. 2013, Supervised descent method and its applications to face alignment, in ‘Proceedings of the IEEE conference on computer vision and pattern recognition’, pp. 532–539.10.1109/CVPR.2013.75
  21. [21] Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R. and Toderici, G. 2015, Beyond short snippets: Deep networks for video classification, in ‘Proceedings of the IEEE conference on computer vision and pattern recognition’, pp. 4694–4702.10.1109/CVPR.2015.7299101
  22. [22] Yuksel, K., Chang, X. and Skarbek, W., 2017, August. Smile detectors correlation. In Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017 (Vol. 10445, p. 104451L). International Society for Optics and Photonics.10.1117/12.2280760
  23. [23] Zhu, S., Li, C., Change Loy, C. and Tang, X. 2015, Face alignment by coarse-to-fine shape searching, in ‘Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition’, pp. 4998–5006.10.1109/CVPR.2015.7299134
  24. [24] Zhu, X. and Ramanan, D., 2012, June. Face detection, pose estimation, and landmark localization in the wild. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (pp. 2879-2886). IEEE.10.1109/CVPR.2012.6248014
DOI: https://doi.org/10.2478/fcds-2019-0017 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 331 - 347
Submitted on: Jan 29, 2019
Accepted on: Apr 23, 2019
Published on: Aug 28, 2019
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Kıvanç Yüksel, Władysław Skarbek, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.