Have a personal or library account? Click to login
RNApolis: Computational Platform for RNA Structure Analysis Cover

RNApolis: Computational Platform for RNA Structure Analysis

By: Marta Szachniuk  
Open Access
|Jun 2019

References

  1. [1] Adamiak R.W., Blazewicz J., Formanowicz P., Gdaniec Z., Kasprzak M., Popenda M., Szachniuk M., An algorithm for an automatic NOE pathways analysis of 2D NMR spectra of RNA duplexes, Journal of Computational Biology,11, 2004, 163-180.10.1089/10665270477341694815072694
  2. [2] Antczak M., Blazewicz J., Lukasiak P., Milostan M., Krasnogor N., Palik G., DomAns-Pattern based method for protein domain boundaries prediction and analysis, Foundations of Computing and Decision Sciences, 36, 2011, 99-119.
  3. [3] Antczak M., Zok T., Popenda M., Lukasiak P., Adamiak R.W., Blazewicz J., Szachniuk M., RNApdbee - a webserver to derive secondary structures from pdb files of knotted and unknotted RNAs, Nucleic Acids Research, 42, 2014, W368-W372.10.1093/nar/gku330408611224771339
  4. [4] Antczak M., Popenda M., Zok T., Sarzynska J., Ratajczak T., Tomczyk K., Adamiak R.W., Szachniuk M., New functionality of RNAComposer: an application to shape the axis of miR160 precursor structure, Acta Biochimica Polonica, 63, 2016, 737-744.10.18388/abp.2016_132927741327
  5. [5] Antczak M., Popenda M., Zok T., Zurkowski M., Adamiak R.W., Szachniuk M., New algorithms to represent complex pseudoknotted RNA structures in dot-bracket notation, Bioinformatics, 34, 2018, 1304-1312.10.1093/bioinformatics/btx783590566029236971
  6. [6] Antczak M., Zok T., Osowiecki M., Popenda M., Adamiak R.W., Szachniuk M., RNAfitme: a webserver for modeling nucleobase and nucleoside residue conformation in fixed-backbone RNA structures, BMC Bioinformatics, 19, 2018, 304.10.1186/s12859-018-2317-9610692830134831
  7. [7] Antczak M., Zablocki M., Zok T., Rybarczyk A., Blazewicz J., Szachniuk M., RNAvista: a webserver to assess RNA secondary structures with non-canonical base pairs, Bioinformatics, 35, 2019, 152-155.10.1093/bioinformatics/bty609629804429985979
  8. [8] Backofen R., Engelhardt J., Erxleben A., Fallmann J., Grüning B., Ohlerd U., Rajewsky N., Stadler P.F., RNA-bioinformatics: Tools, services and databases for the analysis of RNA-based regulation, Journal of Biotechnology, 261, 2017, 76-84.10.1016/j.jbiotec.2017.05.01928554830
  9. [9] Benson D., Karsch-Mizrachi I., Lipman D., Ostell J., Wheeler D., Genbank, Nucleic Acids Research, 35, 2007, D21-D25.10.1093/nar/gkl986178124517202161
  10. [10] Berman H.M., The protein data bank: a historical perspective, Acta Crystallographica Section A, 64, 2007, 88-95.10.1107/S010876730703562318156675
  11. [11] Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E., The Protein Data Bank, Nucleic Acids Research, 28, 2000, 235-242.10.1093/nar/28.1.23510247210592235
  12. [12] Bhagat J., Tanoh F., Nzuobontane E., Laurent T., Orlowski J., Roos M., Wolstencroft K., Aleksejevs S., Stevens R., Pettifer S., Lopez R., Goble C.A., BioCatalogue: a universal catalogue of web services for the life sciences, Nucleic Acids Research, 38, 2010, 689-694.10.1093/nar/gkq394289612920484378
  13. [13] Blazewicz J., Figlerowicz M., Kasprzak M., Nowacka M., Rybarczyk A., RNA Partial Degradation Problem: Motivation, Complexity, Algorithm, Journal of Computational Biology, 18, 2011, 821-834.10.1089/cmb.2010.015321563977
  14. [14] Brion P., Westhof E., Hierarchy and dynamics of RNA folding, Annual Review of Biophysics and Biomolecular Structure, 26, 1997, 113-137.10.1146/annurev.biophys.26.1.1139241415
  15. [15] Chen V.B., Arendall W.B. 3rd, Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallographica. Section D, Biological crystallography, 66, 2010, 12-21.10.1107/S0907444909042073280312620057044
  16. [16] Chen L., Heikkinen L., Wang C.L., Yang Y., Knott K.E., Wong G., miRToolsGallery: A microRNA bioinformatics resources database portal, Database (Oxford), 2018, bay004.10.1093/database/bay004581972529688355
  17. [17] Cruz J.A., Blanchet M.-F., Boniecki M., Bujnicki J.M., Chen S.-J., Cao S., Das R., Ding F., Dokholyan N.V., Flores S.C., Huang L., Lavender C.A., Lisi V., Major F., Mikolajczak K., Patel D.J., Philips A., Puton T., Santalucia J., Sijenyi F., Hermann T., Rother K., Rother M., Serganov A., Skorupski M., Soltysinski T., Sripakdeevong P., Tuszynska I., Weeks K.M., Waldsich C., Wildauer M., Leontis N.B., Westhof E., RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction, RNA, 18, 2012, 610-625.10.1261/rna.031054.111331255022361291
  18. [18] Danaee P., Rouches M., Wiley M., Deng D., Huang L., Hendrix D., bpRNA: largescale automated annotation and analysis of RNA secondary structure, Nucleic Acids Research, 46, 2018, 5381-5394.10.1093/nar/gky285600958229746666
  19. [19] Dawson W.K., Bujnicki J.M., Computational modeling of RNA 3D structures and interactions, Current Opinion in Structural Biology, 37, 2016, 22-28.10.1016/j.sbi.2015.11.00726689764
  20. [20] Deigan K.E., Li T.W., Mathews D.H., Weeks K.M., Accurate SHAPE-directed RNA structure determination, Proceedings of National Academy of Sciences USA, 106, 2009, 97-102.10.1073/pnas.0806929106262922119109441
  21. [21] Gudanis D., Popenda L., Szpotkowski K., Kierzek R., Gdaniec Z., Structural characterization of a dimer of RNA duplexes composed of 8-bromoguanosine modified CGG trinucleotide repeats: a novel architecture of RNA quadruplexes, Nucleic Acids Research,44, 2016, 2409-2416.10.1093/nar/gkv1534479728326743003
  22. [22] Hall S.R., Allen F.H., Brown I.D., The Crystallographic Information File (CIF): a new standard archive file for crystallography, Acta Crystallographica, A47, 1991, 655-685.10.1107/S010876739101067X
  23. [23] Honer zu Siederdissen C., Bernhart S.H., Stadler P.F., Hofacker I.L., A folding algorithm for extended RNA secondary structures, Bioinformatics, 27, 2011, i129-i136.10.1093/bioinformatics/btr220311735821685061
  24. [24] IUPAC-IUB Commission on Biochemical Nomenclature, Abbreviations and symbols for nucleic acids, polynucleotides, and their constituents, Biochemistry, 9, 1970, 4022-4027.10.1021/bi00822a023
  25. [25] Johnson A.D., An extended IUPAC nomenclature code for polymorphic nucleic acids, Bioinformatics, 26, 2010, 1386-1389.10.1093/bioinformatics/btq098286585820202974
  26. [26] Kabsch W., A solution for the best rotation to relate two sets of vectors, Acta Crystallographica, A32, 1976, 922-923.10.1107/S0567739476001873
  27. [27] Kulikova T., Akhtar R., Aldebert P., Althorpe N., Andersson M., Baldwin A., Bates K., Bhattacharyya S., Bower L., Browne P., Castro M., Cochrane G., Duggan K., Eberhardt R., Faruque N., Hoad G., Kanz C., Lee C., Leinonen R., Lin Q., Lombard V., Lopez R., Lorenc D., McWilliam H., Mukherjee G., Nardone F., Pastor M.P., Plaister S., Sobhany S., Stoehr P., Vaughan R., Wu D., Zhu W., Apweiler R., EMBL nucleotide sequence database in 2006, Nucleic Acids Research, 35, 2007, D16-D20.10.1093/nar/gkl913189731617148479
  28. [28] Leontis N.B., Westhof E., Geometric nomenclature and classification of RNA base pairs, RNA, 7, 2001, 499-512.10.1017/S1355838201002515137010411345429
  29. [29] Lorenz R., Bernhart S.H., Höner zu Siederdissen C., Tafer H., Flamm C., Stadler P.F., Hofacker I.L., ViennaRNA Package 2.0, Algorithms for Molecular Biology, 6, 2011, 26.10.1186/1748-7188-6-26331942922115189
  30. [30] Lukasiak P., Antczak M., Ratajczak T., Bujnicki J.M., Szachniuk M., Popenda M., Adamiak R.W., Blazewicz J., RNAlyzer – novel approach for quality analysis of RNA structural models, Nucleic Acids Research,41, 2013, 5978-90.10.1093/nar/gkt318369549923620294
  31. [31] Lukasiak P., Antczak M., Ratajczak T., Szachniuk M., Popenda M., Adamiak R.W., Blazewicz J., RNAssess - a webserver for quality assessment of RNA 3D structures, Nucleic Acids Research,43, 2015, W502-W506.10.1093/nar/gkv557448924226068469
  32. [32] Mathews D.H., Disney M.D., Childs J.L., Schroeder S.J., Zuker M., Turner D.H., Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure, Proceedings of National Academy of Sciences USA, 101, 2004, 7287-7292.10.1073/pnas.040179910140991115123812
  33. [33] Mathews D.H., Turner D.H., Prediction of RNA secondary structure by free energy minimization, Current Opinion in Structural Biology, 16, 2006, 270-278.10.1016/j.sbi.2006.05.01016713706
  34. [34] Miao Z., Westhof E., RNA Structure: Advances and Assessment of 3D Structure Prediction, Annual Review of Biophysics, 46, 2017, 483-503.10.1146/annurev-biophys-070816-03412528375730
  35. [35] Miskiewicz J., Szachniuk M., Discovering structural motifs in miRNA precursors from Viridiplantae kingdom, Molecules, 23, 6, 2018, 1367.10.3390/molecules23061367
  36. [36] Moult J., Fidelis K., Kryshtafovych A., Schwede T., Tramontano A., Critical assessment of methods of protein structure prediction (CASP)-Round XII, Proteins, 86, 2018, 7-15.10.1002/prot.25415589704229082672
  37. [37] Narayanan B.C., Westbrook J., Ghosh S., Petrov A.I., Sweeney B., Zirbel C.L., Leontis N.B., Berman H.M., The Nucleic Acid Database: new features and capabilities, Nucleic Acids Research, 42, 2014, D114–D122.10.1093/nar/gkt980396497224185695
  38. [38] Pang P.S., Elazar M., Pham E.A., Glenn J.S., Simplified RNA secondary structure mapping by automation of SHAPE data analysis, Nucleic Acids Research, 39, 2011, e151.10.1093/nar/gkr773323917621965531
  39. [39] Parisien M., Cruz J.A., Westhof E., Major F., New metrics for comparing and assessing discrepancies between RNA 3D structures and models, RNA, 15, 2009, 1875-1885.10.1261/rna.1700409274303819710185
  40. [40] Pearson W.R., Lipman D.J., Improved tools for biological sequence comparison, Proceedings of the National Academy of Sciences of the United States of America, 85, 1988, 2444-2448.10.1073/pnas.85.8.24442800133162770
  41. [41] Popenda L., Bielecki L., Gdaniec Z., Adamiak R.W., Structure and dynamics of adenosine bulged RNA duplex reveals formation of the dinucleotide platform in the C:G-A triple, Arkivoc: Archive for Organic Chemistry, 3, 2009, 130-144.10.3998/ark.5550190.0010.311
  42. [42] Popenda M., Blazewicz M., Szachniuk M., Adamiak R.W., RNA FRABASE version 1.0: an engine with a database to search for the three-dimensional fragments within RNA structures, Nucleic Acids Research, 36, 2008, D386-D391.10.1093/nar/gkm786223887517921499
  43. [43] Popenda M., Szachniuk M., Blazewicz M., Wasik S., Burke E.K., Blazewicz J., Adamiak R.W., RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures, BMC Bioinformatics, 11, 2010, 231.10.1186/1471-2105-11-231287354320459631
  44. [44] Popenda M., Szachniuk M., Antczak M., Purzycka K.J., Lukasiak P., Bartol N., Blazewicz J., Adamiak R.W., Automated 3D structure composition for large RNAs, Nucleic Acids Research, 40, 2012, e112.10.1093/nar/gks339341314022539264
  45. [45] Prlic A., Yates A., Bliven S.E., Rose P.W., Jacobsen J., Troshin P.V., Chapman M., Gao J., Koh C.H., Foisy S., Holland R., Rimsa G., Heuer M.L., Brandstätter–Müller H., Bourne P.E., Willis S., BioJava: an open-source framework for bioinformatics in 2012, Bioinformatics, 28, 2012 2693–2695.10.1093/bioinformatics/bts494346774422877863
  46. [46] Purzycka K.J., Popenda M., Szachniuk M., Antczak M., Lukasiak P., Blazewicz J., Adamiak R.W., Automated 3D RNA structure prediction using the RNAComposer method for riboswitches, in: S.-J. Chen, D.H. Burke-Aguero (eds.), Methods in Enzymology: Computational Methods for Understanding Riboswitches, 553, Elsevier, 2014, 3-34.10.1016/bs.mie.2014.10.050
  47. [47] Puton T., Kozlowski L.P., Rother K.M., Bujnicki J.M., CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction, Nucleic Acids Research, 41, 2013, 4307-4323.10.1093/nar/gkt101362759323435231
  48. [48] Rybarczyk A., Szostak N., Antczak M., Zok T., Popenda M., Adamiak R.W., Blazewicz J., Szachniuk M., New in silico approach to assessing RNA secondary structures with non-canonical base pairs, BMC Bioinformatics, 16, 2015, 276.10.1186/s12859-015-0718-6455722926329823
  49. [49] Seetin M.G., Mathews D.H., RNA structure prediction: an overview of methods, Methods of Molecular Biology, 905, 2012, 99-122.10.1007/978-1-61779-949-5_822736001
  50. [50] Stevens R.D., Robinson A.J., Goble C.A., MyGrid: Personalised bioinformatics on the information grid, Bioinformatics, 19, 2003, i302-i304.10.1093/bioinformatics/btg104112855473
  51. [51] Sugawara H., Ogasawara O., Okubo K., Gojobori T., Tateno Y., Ddbj with new system and face, Nucleic Acids Research, 36, 2008, D22-D24.10.1093/nar/gkm889223882917962300
  52. [52] Szachniuk M., Assigning NMR Spectra of Irregular RNAs by Heuristic Algorithms, Bulletin of the Polish Academy of Sciences Technical Sciences,63, 2015, 329-338.10.1515/bpasts-2015-0037
  53. [53] Turner D.H., Mathews D.H., RNA Structure Determination: Methods and Protocols, Springer, New York, 2016.10.1007/978-1-4939-6433-8
  54. [54] Wiedemann J., Zok T., Milostan M., Szachniuk M., LCS-TA to identify similar fragments in RNA 3D structures, BMC Bioinformatics, 18, 2017, 456.10.1186/s12859-017-1867-6565159829058576
  55. [55] Wojciechowski P., Frohmberg W., Kierzynka M., Zurkowski P., Blazewicz J., GMAPSEQ– a new method for mapping reads to a reference genome, Foundations of Computing and Decision Sciences, 41, 2016, 123-142.10.1515/fcds-2016-0007
  56. [56] wwPDB consortium, Protein Data Bank: the single global archive for 3D macromolecular structure data, Nucleic Acids Research, 47, 2019, D520–D528.
  57. [57] Zok T., Popenda M., Szachniuk M., MCQ4Structures to compute similarity of molecule structures, Central European Journal of Operations Research, 22, 2014, 457-474.10.1007/s10100-013-0296-5
  58. [58] Zok T., Antczak M., Riedel M., Nebel D., Villmann T., Lukasiak P., Blazewicz J., Szachniuk M., Building the library of RNA 3D nucleotide conformations using clustering approach, International Journal of Applied Mathematics and Computer Science,25, 2015, 689-700.10.1515/amcs-2015-0050
  59. [59] Zok T., Antczak M., Zurkowski M., Popenda M., Blazewicz J., Adamiak R.W., Szachniuk M., RNApdbee 2.0: multifunctional tool for RNA structure annotation, Nucleic Acids Research, 46, 2018, W30-W35.10.1093/nar/gky314603100329718468
DOI: https://doi.org/10.2478/fcds-2019-0012 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 241 - 257
Submitted on: Jan 7, 2019
Accepted on: Feb 15, 2019
Published on: Jun 6, 2019
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Marta Szachniuk, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.