Have a personal or library account? Click to login
Aggregation Operators on Triangular Intuitionistic Fuzzy Numbers and its Application to Multi-Criteria Decision Making Problems Cover

Aggregation Operators on Triangular Intuitionistic Fuzzy Numbers and its Application to Multi-Criteria Decision Making Problems

Open Access
|Sep 2014

References

  1. [1] Atanassov K. Remark on intuitionistic fuzzy numbers. Notes on intuitionistic fuzzy sets, 13, 2007, 29-32.
  2. [2] Atanassov K. Remark on operations “subtraction” over intuitionistic fuzzy sets. Notes on intuitionistic fuzzy sets, 15, 2009, 24-9.
  3. [3] Atanassov K. A New Approach to the Distances between Intuitionistic Fuzzy Sets [M]. Information Processing and Management of Uncertainty in Knowledge-Based Systems Theory and Methods. Springer. 2010: 581-90.10.1007/978-3-642-14055-6_61
  4. [4] Atanassov K. On a new approach towards defining intuitionistic fuzzy subtractions. ACTA UNIVERSITATIS MATTHIAE BELII, series MATHEMATICS, 19, 2011, 11-20.
  5. [5] Atanassov K., Vassilev P., Tcvetkov R. Intuitionistic Fuzzy Sets, Measures and Integrals. Sofia: "Prof. M. Drinov" Academic Publishing House, 2013.
  6. [6] Atanassov K.T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 1986, 87-96.10.1016/S0165-0114(86)80034-3
  7. [7] Atanassov K.T. A theorem for basis operators over intuitionistic fuzzy sets. Mathware & soft computing, 8, 2008, 21-30.
  8. [8] Atanassov K.T. New Intuitionistic Fuzzy Operations [M]. On Intuitionistic Fuzzy Sets Theory. Springer. 2012: 195-257.10.1007/978-3-642-29127-2_9
  9. [9] Boran F.E., Genç S., Kurt M., et.al. A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Systems with Applications, 36, 2009, 11363-8.10.1016/j.eswa.2009.03.039
  10. [10]Burillo P., Bustince H., Mohedano V. Some definitions of intuitionistic fuzzy number. First properties; The Proceedings of the 1st Workshop on Fuzzy Based Expert Systems, 1994.
  11. [11]Chen Y., Li B. Dynamic multi-attribute decision making model based on triangular intuitionistic fuzzy numbers. Scientia Iranica, 18, 2011, 268-74.10.1016/j.scient.2011.03.022
  12. [12]Farhadinia B. A theoretical development on the entropy of interval-valued fuzzy sets based on the intuitionistic distance and its relationship with similarity measure. Knowledge-Based Systems, 39, 2013, 79-84.10.1016/j.knosys.2012.10.006
  13. [13]Hwang C.-M., Yang M.-S., Hung W.-L., et.al. A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recognition. Information Sciences, 189, 2012, 93-109.10.1016/j.ins.2011.11.029
  14. [14]Jianqiang W., Zhong Z. Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems. Systems Engineering and Electronics, Journal of, 20, 2009, 321-6.
  15. [15]K. A., G. G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31, 1989, 343-9.10.1016/0165-0114(89)90205-4
  16. [16]Li D.-F. A note on “using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly”. Microelectronics Reliability, 48, 2008, 1741.10.1016/j.microrel.2008.07.059
  17. [17]Li D.-F. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems. Computers & Mathematics with Applications, 60, 2010, 1557-70.10.1016/j.camwa.2010.06.039
  18. [18]Li D.F., Nan J.X., Zhang M.J. A ranking method of triangular intuitionistic fuzzy numbers and application to decision making. International Journal of Computational Intelligence Systems, 3, 2010, 522-30.10.1080/18756891.2010.9727719
  19. [19]Liu P., Zhang X. Research on the supplier selection of a supply chain based on entropy weight and improved ELECTRE-III method. International Journal of Production Research, 49, 2011, 637-46.10.1080/00207540903490171
  20. [20]Nan J.-X., Li D.-F., Zhang M.-J. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers. International Journal of Computational Intelligence Systems, 3, 2010, 280-9.10.1080/18756891.2010.9727699
  21. [21]Robinson P.J., Amirtharaje C.H. Extended TOPSIS with Correlation Coefficient of Triangular Intuitionistic Fuzzy Sets for Multiple Attribute Group Decision Making. International Journal of Decision Support System Technology (IJDSST), 3, 2011, 15-41.10.4018/jdsst.2011070102
  22. [22]Shu M.-H., Cheng C.-H., Chang J.-R. Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly. Microelectronics Reliability, 46, 2006, 2139-48.10.1016/j.microrel.2006.01.007
  23. [23]Tan C. A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS. Expert Systems with Applications, 38, 2011, 3023-33.10.1016/j.eswa.2010.08.092
  24. [24]Tcvetkov R., Szmidt E., Kacprzyk J., et.al. A modified Hausdorff distance between intuitionistic fuzzy sets. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 65, 2012, 1035-42.
  25. [25]Wan S.-P. Survey on intuitionistic fuzzy multi-attribute decision making approach. Control and decision, 25, 2010, 1601-6.
  26. [26]Wan S.-P., Li D.-F. Possibility mean and variance based method for multi-attribute decision making with triangular intuitionistic fuzzy numbers. Journal of Intelligent and Fuzzy Systems, 24, 2013, 743-54.10.3233/IFS-2012-0594
  27. [27]Wan S.-P., Wang Q.-Y., Dong J.-Y. The extended VIKOR method for multi-attribute group decision making with triangular intuitionistic fuzzy numbers. Knowledge-Based Systems, 52, 2013, 65-77.10.1016/j.knosys.2013.06.019
  28. [28]Wang J.-Q., Nie R., Zhang H.-Y., et.al. New operators on triangular intuitionistic fuzzy numbers and their applications in system fault analysis. Information Sciences, 251, 2013, 79-95.10.1016/j.ins.2013.06.033
  29. [29]Wang J.-Q., Zhang H.-Y. Multicriteria decision-making approach based on Atanassov's intuitionistic fuzzy sets with incomplete certain information on weights. Fuzzy Systems, IEEE Transactions on, 21, 2013, 510-5.10.1109/TFUZZ.2012.2210427
  30. [30]Wang J., Zhang Z. Multi-criteria decision-making method with incomplete certain information based on intuitionistic fuzzy number. Control and decision, 24, 2009, 226-30.
  31. [31]Wang Y. Using the method of maximizing deviations to make decision for multi-indices. System Engineering and Electronics, 7, 1998, 24-6.
  32. [32]Wei G.-W. Maximizing deviation method for multiple attribute decision making in intuitionistic fuzzy setting. Knowledge-Based Systems, 21, 2008, 833-6.10.1016/j.knosys.2008.03.038
  33. [33]Wei G.-W. GRA method for multiple attribute decision making with incomplete weight information in intuitionistic fuzzy setting. Knowledge-Based Systems, 23, 2010, 243-7.10.1016/j.knosys.2010.01.003
  34. [34]Wei G. Some Arithmetic Aggregation Operators with Intuitionistic Trapezoidal Fuzzy Numbers and Their Application to Group Decision Making. Journal of Computers, 5, 2010, 345-51.10.4304/jcp.5.3.345-351
  35. [35]Wu Z., Chen Y. The maximizing deviation method for group multiple attribute decision making under linguistic environment. Fuzzy Sets and Systems, 158, 2007, 1608-17.10.1016/j.fss.2007.01.013
  36. [36]Xu Z. Intuitionistic fuzzy aggregation operators. Fuzzy Systems, IEEE Transactions on, 15, 2007, 1179-87. 10.1109/TFUZZ.2006.890678
  37. [37]Xu Z. Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowledge-Based Systems, 24, 2011, 749-60.10.1016/j.knosys.2011.01.011
  38. [38]Xu Z., Chen J. On geometric aggregation over interval-valued intuitionistic fuzzy information; The Fourth International Conference on Fuzzy Systems and Knowledge Discovery(FSKD 2007) Haikou, China, 2007.10.1109/FSKD.2007.427
  39. [39]Xu Z., Yager R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. International Journal of General Systems, 35, 2006, 417-33.10.1080/03081070600574353
  40. [40]Zadeh L.A. Fuzzy sets. Information and control, 8, 1965, 338-53.10.1016/S0019-9958(65)90241-X
  41. [41]Zhang S.-F., Liu S.-Y. A GRA-based intuitionistic fuzzy multi-criteria group decision making method for personnel selection. Expert Systems with Applications, 38, 2011, 11401-5. 10.1016/j.eswa.2011.03.012
DOI: https://doi.org/10.2478/fcds-2014-0011 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 189 - 208
Submitted on: Mar 1, 2014
Published on: Sep 9, 2014
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Changyong Liang, Shuping Zhao, Junling Zhang, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.