Have a personal or library account? Click to login
Hungarian Farmers and the Adoption of Precision Farming Cover

Hungarian Farmers and the Adoption of Precision Farming

Open Access
|Sep 2023

References

  1. Adrian, A. M., Norwood, S. H. & Mask, P. L. (2005). Producers’ perceptions and attitudes toward precision agriculture technologies. Computers and Electronics in Agriculture 48(3), 256–271. DOI: 10.1016/j.compag.2005.04.004.
  2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Process 50(2), 179–211. DOI: 10.1016/0749-5978(91)90020-T.
  3. Aubert, B. A., Schroeder, A. & Grimaudo, J. (2012). IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support System 54(1), 510–520. DOI: 10.1016/j.dss.2012.07.002.
  4. Bai, A., Kovách, I., Czibere, I., Megyesi, B. & Balogh, P. (2022). Examining the Adoption of Drones and Categorisation of Precision Elements among Hungarian Precision Farmers Using a Trans-Theoretical Model Drones 6(8), Article ID. DOI: 10.3390/drones6080200.
  5. Balogh, P., Bujdos, Á., Czibere, I., Fodor, L., Gabnai, Z., Kovách, I., Nagy, J. & Bai, A. (2020). Main Motivational Factors of Farmers Adopting Precision Farming in Hungary. Agronomy, 10(4), Article ID 610. DOI: 10.3390/agronomy10040610.
  6. Balogh, P., Bai, A., Czibere, I., Kovách, I., Fodor, L., Bujdos, Á., Sulyok, D., Gabnai. Z. & Birkner, Z. (2021). Economic and Social Barriers of Precision Farming in Hungary. Agronomy 11(6), Article ID 112. DOI: 10.3390/agronomy11061112.
  7. Barnes, A., De Soto, I., Eory, V., Beck, B., Balafoutis, A., Sánchez, B., Vangeyte, J., Fountas, S., van der Wal, T. & Gómez-Barbero, M. (2019). Influencing factors and incentives on the intention to adopt precision agricultural technologies within arable farming systems. Environmental Science and Policy 93, 66–74. DOI: 10.1016/j.envsci.2018.12.014.
  8. Charatsari, C., Lioutas, E. D. & Koutsouris, A. (2017). Farmers’ motivational orientation toward participation in competence development projects: A self-determination theory perspective. The Journal of Agricultural Education and Extension, 23(2), 105–120. DOI: 10.1080/1389224X.2016.1261717.
  9. Chabot, D., Dillon, C., Shemrock, A., Weissflog, N. & Sager, E. P. (2018). An object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery. ISPRS International Journal of Geo-Information 7(8), Article ID 294. DOI: 10.3390/ijgi7080294.
  10. Csurgó, B., Kovách, I. & Megyesi, B. (2018). After a long March: the results of two decades of rural restructuring in Hungary. Eastern European Countryside 24(1), 81–109. DOI: 10.2478/eec-2018-0005.
  11. Drucker, P. (1985). Innovation and Entrepreneurship. New York: Harper and Row Publishers.
  12. Fountas, S., Pedersen, S. M. & Blackmore, S. (2005). ICT in Precision Agriculture – Diffusion of technology. In Gelb, E. & Offer, A., eds., ICT in Agriculture: Perspectives in Technological Innovation. Jerusalem: The Hebrew University.
  13. Gaál, M., Humenyik, N., Illés, I. & Kiss, A.(2020). A precíziós szántóföldi növénytermesztés helyzete és ökonómiai vizsgálata. Budapest: NAIK Agrárgazdasági Kutatóintézet.
  14. Griffin, T. W., Miller, N. J., Bergtold, J., Shanoyan, A., Sharda, A. & Ciampitti, I. A. (2017). Farm’s sequence of adoption of information-intensive precision agricultural technology. Applied Engineering in Agriculture. 33(4), 521–527. DOI: 10.13031/aea.12228.
  15. Hansson, H. & Kokko, S. (2018). Farmers' mental models of change and implications for farm renewal – A case of restoration of a wetland in Sweden. Journal of Rural Studies 60, 141–151. DOI: 10.1016/j.jrurstud.2018.04.006.
  16. Kemény, G., Lámfalusi, I. & Molnár, A. (2017). A precíziós szántóföldi növénytermesztés összehasonlító vizsgálata. Budapest: Agrárgazdasági Kutató Intézet. DOI: 10.7896/ak1703.
  17. Kovách, I., Megyesi, B., Bai, A. & Balogh, P. (2022). Sustainability and agricultural regeneration in the Hungarian agriculture. Sustainability, 14(2), Article ID 969. DOI: 10.3390/su14020969.
  18. Lencsés, E. & Mészáros, K. (2020). Business model innovation with precision farming technology form farmers point of view. Hungarian Agricultural Engineering, 38, 79–84. DOI: 10.17676/HAE.2020.38.79.
  19. Li, W., Clark, B., Taylor, J. A., Kendall, H., Jones, G., Li, Z., Jin, S., Zhao, C., Yang, G., Shuai, C., Cheng, X., Chen, J., Yang, H. & Frewer, L. J. (2020). A hybrid modelling approach to understanding adoption of precision agriculture technologies in Chinese cropping systems. Computers and Electronics in Agriculture, 172, Article ID: 105305. DOI: 10.1016/j.compag.2020.105305.
  20. Lynne, G. D., Franklin Casey, C., Hodges, A., Rahmani, M. (1995). Conservation technology adoption decisions and the theory of planned behavior. Journal of Economic Psychology 16(4), 581–598. DOI: 10.1016/0167-4870(95)00031-6.
  21. Milics, G., Smuk, N., Virág, I. & Neményi, M. (2012). Precision agriculture – technical development for a sustainable agriculture. In: Neményi, M. & Heil, B., eds., The Impact of Urbanization, Industrial and Agricultural Technologies on the Natural Environment: International Scientific Conference on Sustainable Development and Ecological Footprint. (pp. 231–240). Budapest, Nemzeti Tankönyvkiadó; Nyugat-magyarországi Egyetem. ISBN: 978-963-19-7352-5.
  22. Milics, G. (2019). Application of UAVs in Precision Agriculture. In: Palocz-Andresen, M., Szalay, D., Gosztom, A., Sípos, L. & Taligás, T, eds., International Climate Protection (pp. 93–97). Cham: Springer International Publishing.
  23. Milics, G., Igor, M., Magyar, F. & Varga, P. M. (2022). Data-based agriculture in the V4 countries – sustainability, efficiency and safety. Scientia et Securitas 2(4), 491–503. DOI: 10.1556/112.2021.00072.
  24. Morgan, M. & Ess, D. (1997). The Precision-Farming Guide for Agriculturists: The Nuts and Bolts Guide to “Getting up to Speed” Fast and Effectively with This Exciting New Management. Moline, IL: John Deere.
  25. Oláh, J. & Popp, J. (2018). The outlook for precision farming in Hungary. Network Intelligence Studies 6(12), 91–99.
  26. Pino, G., Toma, P., Rizzo, C., Miglietta, P., Peluso, A., Guido, G. (2017). Determinants of farmers’ intention to adopt water saving measures: evidence from Italy. Sustainability 9(1), Article ID 77. DOI: 10.3390/su9010077.
  27. Popp, J., Erdei, E. & Oláh, J. (2018). A precíziós gazdálkodás kilátásai Magyarországon. International Journal of Engineering and Management Sciences, 3(1), 133–147. DOI: 10.21791/IJEMS.2018.1.15.
  28. Regan, A. (2019). ‘Smart farming’ in Ireland: A risk perception study with key governance actors. Wageningen Journal of Life Sciences, 90–91, Article ID 100292. DOI: 10.1016/j.njas.2019.02.003.
  29. Rose, D. C., Sutherland, W. J., Parker, C., Lobley, M., Winter, M., Morris, C., Twining, S., Ffoulkes, C., Amano, T. & Dicks, L.V. (2016). Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems, 149, 165–174. DOI: 10.1016/j.agsy.2016.09.009.
  30. Shaikh, T. A., Rasool, T. & Lone, F. R. (2022). Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture, 198(C), Article ID: 107119. DOI: 10.1016/j.compag.2022.107119.
  31. Stræte, E. P., Vik, J., Fuglestad, E. M., Gjefsen, M. D., Melås, A. M. & Søraa, R. A. (2022). Critical support for different stages of innovation in agriculture: What, when, how? Agricultural Systems, 203, Article ID: 103526. DOI: 10.1016/j.agsy.2022.103526.
  32. Takácsné György, K., Lámfalusi, I., Molnár, A., Sulyok, D., Gaál, M., Keményné Horváth, Zs., Domán, Cs., Illés, I., Kiss, A., Péter, K. & Kemény, G. (2018). Precision agriculture in Hungary: assessment of perceptions and accounting records of FADN arable farms. Studies in Agricultural Economics, 120(1), 47–54. DOI: 10.7896/j.1717.
  33. Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. DOI: 10.1287/mnsc.46.2.186.
  34. Hadászi, L. (2018). A precíziós eszközök kompatibilitása nélkül elmarad az áttörés. Interjú. Retrieved from https://www.magro.hu/agrarhirek/a-precizios-eszkozok-kompatibilitasa-nelkul-elmarad-azattores/. (Accessed: 2022. 12. 31.)
  35. Jóri, J. I. (2019). A precíziós gazdálkodás gépesítési kérdései [unpublished prezentation]. Retrieved from https://mgi.naik.hu/system/files/uploads/2019-01/dr_jori_j_istvan_a_precizios_gepesitesi_kerdesei.pdf. (Accessed: 2022.12.31.)
  36. Központi Statisztikai Hivatal (KSH) (2021). Agrárcenzus 2020. Előzetes adatok. https://www.ksh.hu/docs/hun/xftp/ac2020/elozetes_adatok/index.html#/cover (2022.12.31).
  37. Nemzeti Agrárkamara (2019). Egyre többen végeznek precíziós gazdálkodást. Retrieved from: http://nak.hu/en/agazati-hirek/mezogazdasag/146-novenytermesztes/99560-egyre-tobbenvegeznek-precizios-gazdalkodast. (Accessed: 2022.12.31.)
Language: English
Page range: 366 - 380
Submitted on: Jul 20, 2022
|
Accepted on: Apr 25, 2023
|
Published on: Sep 20, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Ibolya Czibere, Imre Kovách, Noémi Loncsák, published by Mendel University in Brno
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.