Have a personal or library account? Click to login
Encoding Behavior Commonalities In Global Stock Market Indexes: Unsupervised Machine Learning Approach Cover

Encoding Behavior Commonalities In Global Stock Market Indexes: Unsupervised Machine Learning Approach

Open Access
|Jun 2025

References

  1. Abu-Mostafa, Y. S., & Atiya, A. F. (1996). Introduction to financial forecasting. Applied Intelligence, 6(3), 205–213. https://doi.org/10.1007/bf00126626
  2. Aghabozorgi, S., Seyed Shirkhorshidi, A., & Ying Wah, T. (2015). Time-series clustering – A decade review. Information Systems, 53, 16–38. https://doi.org/10.1016/j.is.2015.04.007
  3. Aoi, S., Asano, Y., Kunugi, T., Kimura, T., Uehira, K., Takahashi, N., Ueda, H., Shiomi, K., Matsumoto, T., & Fujiwara, H. (2020). MOWLAS: NIED observation network for earthquake, tsunami and volcano. Earth, Planets and Space, 72(1). https://doi.org/10.1186/s40623-020-01250-x
  4. Bachelier, L. (1901). Théorie mathématique du jeu. Annales Scientifiques de l’École Normale Supérieure, 18, 143–209. https://doi.org/10.24033/asens.493
  5. Baitinger, E., & Papenbrock, J. (2017). Interconnectedness risk and active portfolio management. The Journal of Investment Strategies. https://doi.org/10.21314/jois.2017.081
  6. Basalto, N., Bellotti, R., Francesco De Carlo, Paolo Facchi, & Saverio Pascazio. (2005). Clustering stock market companies via chaotic map synchronization. Physica D: Nonlinear Phenomena. https://doi.org/10.1016/j.physa.2004.07.034
  7. Benabdeslem, K., & Bennani, Y. (2006). Dendogram-based SVM for Multi-Class Classification. Journal of Computing and Information Technology, 14(4), 283. https://doi.org/10.2498/cit.2006.04.03
  8. Bhardwaj, S. (2018, December 10). Use these two tools to look for less risky, promising stocks. The Economic Times. https://economictimes.indiatimes.com/wealth/invest/use-these-two-tools-to-look-for-less-risky-promising-stocks/articleshow/66997140.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst
  9. Billio, M., Getmansky, M., Lo, A. W., & Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of Financial Economics, 104(3), 535–559. https://doi.org/10.1016/j.jfineco.2011.12.010
  10. Billmeier, A., & Massa, I. (2007). What Drives Stock Market Development in the Middle East and Central Asia-Institutions, Remittances, or Natural Resources? 07(157), 1–21. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1007906
  11. Billmeier, A., & Massa, I. (2009). What drives stock market development in emerging markets—institutions, remittances, or natural resources? Emerging Markets Review, 10(1), 23–35. https://doi.org/10.1016/j.ememar.2008.10.005
  12. CBS News. (2021, March 23). How did the pandemic usher in one of the stock market’s greatest runs? Www.cbsnews.com. https://www.cbsnews.com/news/stock-market-good-year/
  13. Celik, I. E. (2023). Impact of Sustainability Reporting on Financial Performance. Opportunities and Challenges in Sustainability, 2(1), 23-29. https://doi.org/10.56578/ocs020103
  14. Dose, C., & Cincotti, S. (2005). Clustering of financial time series with application to index and enhanced index tracking portfolio. Physica A: Statistical Mechanics and Its Applications, 355(1), 145–151. https://doi.org/10.1016/j.physa.2005.02.078
  15. Elton, E. J., & Gruber, M. J. (1971). Improved Forecasting Through the Design of Homogeneous Groups. The Journal of Business, 44(4), 432. https://doi.org/10.1086/295403
  16. Esmaeilpour Moghadam, H., Mohammadi, T., Feghhi Kashani, M., & Shakeri, A. (2019). Complex networks analysis in Iran stock market: The application of centrality. Physica A: Statistical Mechanics and Its Applications, 531, 121800. https://doi.org/10.1016/j.physa.2019.121800
  17. Feng, F., He, X., Wang, X., Luo, C., Liu, Y., & Chua, T.-S. (2019). Temporal Relational Ranking for Stock Prediction. ACM Transactions on Information Systems, 37(2), 1–30. https://doi.org/10.1145/3309547
  18. Groette, O. (2024, May 8). The Best Performing Stock Markets In The World Since 1900 – Quantified Strategies For Traders And Investors. Quantified Investment Strategies. https://www.quantifiedstrategies.com/best-performing-stock-markets-in-the-world/
  19. Gupta, R., & Basu, P. K. (2011). Weak Form Efficiency In Indian Stock Markets. International Business & Economics Research Journal (IBER), 6(3). https://doi.org/10.19030/iber.v6i3.3353
  20. Hajizadeh, E., Ardakani, H. D., & Shahrabi, J. (2010). Application of data mining techniques in stock markets: A survey. Journal of Economics and International Finance, 2(7), 109–118. https://mineracaodedados.wordpress.com/wp-content/uploads/2012/12/application-of-data-mining-techniques-in-stock-markets.pdf
  21. History.com Editors. (2019, July 10). Dow suffers largest single-day drop. HISTORY. https://www.history.com/this-day-in-history/dow-suffers-largest-single-day-drop-great-recession
  22. Imeni, M., Bao, Z. K., & Nozick, V. (2024). Multiscale Partial Correlation Analysis of Tehran Stock Market Indices: Clustering and Inter-Index Relationships. Journal of Operational and Strategic Analytics, 2(1), 1-10. https://doi.org/10.56578/josa020101
  23. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666. https://doi.org/10.1016/j.patrec.2009.09.011
  24. Johnson, N. F., McDonald, M., Suleman, O., Williams, S., & Howison, S. (2005). What shakes the FX tree? Understanding currency dominance, dependence, and dynamics (Keynote Address). Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE. https://doi.org/10.1117/12.618875
  25. Kaufman, L., & Rousseeuw, P. J. (1990). Finding Groups in Data. In Wiley Series in Probability and Statistics. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470316801
  26. Kim, G.-H., & Kim, S.-H. (2018). Variable Selection for Artificial Neural Networks with Applications for Stock Price Prediction. Applied Artificial Intelligence, 33(1), 54–67. https://doi.org/10.1080/08839514.2018.1525850
  27. Kolluru, M., & Suresh, V. (2020). A Cluster Analysis on Sustained Global Competitiveness for European Countries. ECONOMICS, 8(1), 7–22. https://doi.org/10.2478/eoik-2020-0006
  28. Lafabregue, B., Weber, J., Gançarski, P., & Forestier, G. (2021). End-to-end deep representation learning for time series clustering: a comparative study. Data Mining and Knowledge Discovery. https://doi.org/10.1007/s10618-021-00796-y
  29. Laurini, M. P., & Chaim, P. (2020). Brazilian stock market bubble in the 2010s. SN Business & Economics, 1(1). https://doi.org/10.1007/s43546-020-00005-w
  30. León, D., Arbey Aragón, Javier Organista Sandoval, Germán Hernández, Andrés Arévalo, & Francisco, J. (2017). Clustering algorithms for Risk-Adjusted Portfolio Construction. Procedia Computer Science, 108, 1334–1343. https://doi.org/10.1016/j.procs.2017.05.185
  31. Li, G., Wang, X., Meng, Z., & Zhao, H. (2013). Seawater inrush assessment based on hydrochemical analysis enhanced by hierarchy clustering in an undersea goldmine pit, China. Environmental Earth Sciences, 71(12), 4977–4987. https://doi.org/10.1007/s12665-013-2888-8
  32. Li, M., & Dempsey, M. (2018). The Fama and French three-factor model in developing markets: evidence from the Chinese markets. Investment Management and Financial Innovations, 15(1), 46–57. https://doi.org/10.21511/imfi.15(1).2018.06
  33. Kushnir, N., Kovshun, N., Adamchuk, T., Tymeichuk, Y., Tsaruk, D. (2023). Ukrainian Enterprises’ Equity Capital Financial Monitoring and Analysis of Its Impact on Profitability Indicators. Collection of papers new economy, 1, 1-16. https://doi.org/10.61432/CPNE0101001k
  34. Marti, G., Nielsen, F., Bińkowski, M., & Donnat, P. (2021). A Review of Two Decades of Correlations, Hierarchies, Networks and Clustering in Financial Markets. Signals and Communication Technology, 245–274. https://doi.org/10.1007/978-3-030-65459-7_10
  35. Mastilo, Z., Štilić, A., Gligović, D., & Puška, A. (2024). Assessing the banking sector of Bosnia and Herzegovina: An analysis of financial indicators through the MEREC and MARCOS methods. Journal of Central Banking Theory and Practice, 13(1), 167–197. https://doi.org/10.2478/jcbtp-2024-0008
  36. Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., & Long, J. (2018). A Survey of Clustering With Deep Learning: From the Perspective of Network Architecture. IEEE Access, 6, 39501–39514. https://doi.org/10.1109/access.2018.2855437
  37. Mukherjee, K., & Mishra, R. K. (2010). Stock market integration and volatility spillover: India and its major Asian counterparts. Research in International Business and Finance, 24(2), 235–251. https://doi.org/10.1016/j.ribaf.2009.12.004
  38. Muramatsu, R., Pedro Raffy Vartanian, & Gabriel. (2023). A Behavioral Interpretation of Volatility Patterns in Brazilian Stock Market: Analysis of Pre and Post-COVID-19 Periods from 2019 to 2021. International Journal of Business and Management, 18(4), 24–24. https://doi.org/10.5539/ijbm.v18n4p24
  39. Musmeci, N., Aste, T., & Di Matteo, T. (2015). Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods. PLOS ONE, 10(3), e0116201. https://doi.org/10.1371/journal.pone.0116201
  40. Nanda, S. R., Mahanty, B., & Tiwari, M. K. (2010). Clustering Indian stock market data for portfolio management. Expert Systems with Applications, 37(12), 8793–8798. https://doi.org/10.1016/j.eswa.2010.06.026
  41. Nellore Naveen Reddy, & Senthilkumar C. (2022). Energy Efficient Clustering Hierarchy in Wireless Sensor Network using Dynamic Clustering Approach ILEACH-ACHH Protocol Compared with LEACH-ACHH Protocol. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). https://doi.org/10.1109/iciptm54933.2022.9753955
  42. Papenbrock, J., & Schwendner, P. (2015). Handling risk-on/risk-off dynamics with correlation regimes and correlation networks. Financial Markets and Portfolio Management, 29(2), 125–147. https://doi.org/10.1007/s11408-015-0248-2
  43. Pastor, L., & Veronesi, P. (2009). Learning in Financial Markets. Annual Review of Financial Economics, 1(1), 361–381. https://doi.org/10.1146/annurev.financial.050808.114428
  44. Prime, S. (2020). Forecasting the changes in daily stock prices in Shanghai Stock Exchange using Neural Network and Ordinary Least Squares Regression. Investment Management and Financial Innovations, 17(3), 292–307. https://doi.org/10.21511/imfi.17(3).2020.22
  45. Reddy, C. O., & K, M. (2020). Hierarchy based firefly optimized K-means clustering for complex question answering. Indonesian Journal of Electrical Engineering and Computer Science, 17(1), 264. https://doi.org/10.11591/ijeecs.v17.i1.pp264-272
  46. Renugadevi, T., Ezhilarasie, R., Sujatha, M., & Umamakeswari, A. (2016). Stock Market Prediction using Hierarchical Agglomerative and K-Means Clustering Algorithm. Indian Journal of Science and Technology, 9(48). https://doi.org/10.17485/ijst/2016/v9i48/108029
  47. Samatova, N., Gov, S., Ostrouchov, G., Gov, O., Geist, A., & Gov, G. (2002). Distributed and Parallel Databases, 11, 157–180. https://www.freescience.org/tolik/publications/papers/pdf_papers/2002_Samatova_RACHET.pdf
  48. Samuelson, P. A. (1976). Is Real-World Price a Tale Told by the Idiot of Chance? The Review of Economics and Statistics, 58(1), 120. https://doi.org/10.2307/1936018
  49. Semko, R. (2019). Machine learning for robo-advisors: testing for neurons specialization. Investment Management and Financial Innovations, 16(4), 205–214. https://doi.org/10.21511/imfi.16(4).2019.18
  50. Sharma, M., Sharma, S., & Singh, G. (2018). Performance Analysis of Statistical and Supervised Learning Techniques in Stock Data Mining. Data, 3(4), 54. https://doi.org/10.3390/data3040054
  51. Topić – Pavković, B. (2024). Challenges to Global Monetary and Financial Stability. Collection of papers new economy, 2, 31-45. https://doi.org/10.61432/CPNE0201031t
  52. Vázquez, A. (2003). Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Physical Review E, 67(5). https://doi.org/10.1103/physreve.67.056104
  53. Wang, J., Huang, X., & Wang, X. (2023). Risk Spillovers and Hedging in the Chinese Stock Market: An Asymmetric VAR-BEKK-AGARCH Analysis. Acadlore Transactions on Applied Mathematics and Statistics, 1(3), 111-129. https://doi.org/10.56578/atams010301
  54. Wang, Y.-J., & Lee, H.-S. (2008). A clustering method to identify representative financial ratios. Information Sciences, 178(4), 1087–1097. https://doi.org/10.1016/j.ins.2007.09.016
  55. Wei-Shan Hu, J., Lee, Y.-H., & Chen, Y.-C. (2018). Mutual fund herding behavior and investment strategies in Chinese stock market. Investment Management and Financial Innovations, 15(2), 87–95. https://doi.org/10.21511/imfi.15(2).2018.08
  56. World Federation of Exchanges database. (n.d.). Market capitalization of listed domestic companies (current US$) | Data. Data.worldbank.org; World Bank. Retrieved May 26, 2024, https://data.worldbank.org/indicator/CM.MKT.LCAP.CD?end=2020&most_recent_value_desc=true&start=1975
  57. Zhang, Y., Lee, G. H. T., Wong, J. C., Kok, J. L., Prusty, M., & Cheong, S. A. (2011). Will the US economy recover in 2010? A minimal spanning tree study. Physica A: Statistical Mechanics and Its Applications, 390(11), 2020–2050. https://doi.org/10.1016/j.physa.2011.01.020
DOI: https://doi.org/10.2478/eoik-2025-0041 | Journal eISSN: 2303-5013 | Journal ISSN: 2303-5005
Language: English
Page range: 283 - 303
Submitted on: Dec 23, 2024
Accepted on: May 16, 2025
Published on: Jun 5, 2025
Published by: Oikos Institut d.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Vidya Suresh, Mythili Kolluru, Vaheed Ubaidullah, published by Oikos Institut d.o.o.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.