Have a personal or library account? Click to login
Encoding Behavior Commonalities In Global Stock Market Indexes: Unsupervised Machine Learning Approach Cover

Encoding Behavior Commonalities In Global Stock Market Indexes: Unsupervised Machine Learning Approach

Open Access
|Jun 2025

References

  1. Abu-Mostafa, Y. S., &amp; Atiya, A. F. (1996). Introduction to financial forecasting. <em>Applied Intelligence</em>, 6(3), 205–213. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/bf00126626" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/bf00126626</a>">https://doi.org/10.1007/bf00126626</ext-link>
  2. Aghabozorgi, S., Seyed Shirkhorshidi, A., &amp; Ying Wah, T. (2015). Time-series clustering – A decade review. <em>Information Systems</em>, 53, 16–38. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.is.2015.04.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.is.2015.04.007</a>">https://doi.org/10.1016/j.is.2015.04.007</ext-link>
  3. Aoi, S., Asano, Y., Kunugi, T., Kimura, T., Uehira, K., Takahashi, N., Ueda, H., Shiomi, K., Matsumoto, T., &amp; Fujiwara, H. (2020). MOWLAS: NIED observation network for earthquake, tsunami and volcano. <em>Earth, Planets and Space</em>, 72(1). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/s40623-020-01250-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s40623-020-01250-x</a>">https://doi.org/10.1186/s40623-020-01250-x</ext-link>
  4. Bachelier, L. (1901). Théorie mathématique du jeu. <em>Annales Scientifiques de l’École Normale Supérieure</em>, 18, 143–209. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.24033/asens.493" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.24033/asens.493</a>">https://doi.org/10.24033/asens.493</ext-link>
  5. Baitinger, E., &amp; Papenbrock, J. (2017). Interconnectedness risk and active portfolio management. <em>The Journal of Investment Strategies</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.21314/jois.2017.081" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21314/jois.2017.081</a>">https://doi.org/10.21314/jois.2017.081</ext-link>
  6. Basalto, N., Bellotti, R., Francesco De Carlo, Paolo Facchi, &amp; Saverio Pascazio. (2005). Clustering stock market companies via chaotic map synchronization. <em>Physica D: Nonlinear Phenomena</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.physa.2004.07.034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.physa.2004.07.034</a>">https://doi.org/10.1016/j.physa.2004.07.034</ext-link>
  7. Benabdeslem, K., &amp; Bennani, Y. (2006). Dendogram-based SVM for Multi-Class Classification. <em>Journal of Computing and Information Technology</em>, 14(4), 283. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2498/cit.2006.04.03" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2498/cit.2006.04.03</a>">https://doi.org/10.2498/cit.2006.04.03</ext-link>
  8. Bhardwaj, S. (2018, December 10). Use these two tools to look for less risky, promising stocks. <em>The Economic Times</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://economictimes.indiatimes.com/wealth/invest/use-these-two-tools-to-look-for-less-risky-promising-stocks/articleshow/66997140.cms?utm_source=contentofinterest&amp;utm_medium=text&amp;utm_campaign=cppst">https://economictimes.indiatimes.com/wealth/invest/use-these-two-tools-to-look-for-less-risky-promising-stocks/articleshow/66997140.cms?utm_source=contentofinterest&amp;utm_medium=text&amp;utm_campaign=cppst</ext-link>
  9. Billio, M., Getmansky, M., Lo, A. W., &amp; Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. <em>Journal of Financial Economics</em>, 104(3), 535–559. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jfineco.2011.12.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jfineco.2011.12.010</a>">https://doi.org/10.1016/j.jfineco.2011.12.010</ext-link>
  10. Billmeier, A., &amp; Massa, I. (2007). <em>What Drives Stock Market Development in the Middle East and Central Asia-Institutions, Remittances, or Natural Resources?</em> 07(157), 1–21. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1007906">https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1007906</ext-link>
  11. Billmeier, A., &amp; Massa, I. (2009). What drives stock market development in emerging markets—institutions, remittances, or natural resources? <em>Emerging Markets Review</em>, 10(1), 23–35. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ememar.2008.10.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ememar.2008.10.005</a>">https://doi.org/10.1016/j.ememar.2008.10.005</ext-link>
  12. CBS News. (2021, March 23). <em>How did the pandemic usher in one of the stock market’s greatest runs?</em> <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.cbsnews.com">Www.cbsnews.com</ext-link>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.cbsnews.com/news/stock-market-good-year/">https://www.cbsnews.com/news/stock-market-good-year/</ext-link>
  13. Celik, I. E. (2023). Impact of Sustainability Reporting on Financial Performance. <em>Opportunities and Challenges in Sustainability,</em> 2(1), 23-29. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.56578/ocs020103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.56578/ocs020103</a>">https://doi.org/10.56578/ocs020103</ext-link>
  14. Dose, C., &amp; Cincotti, S. (2005). Clustering of financial time series with application to index and enhanced index tracking portfolio. <em>Physica A: Statistical Mechanics and Its Applications</em>, 355(1), 145–151. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.physa.2005.02.078" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.physa.2005.02.078</a>">https://doi.org/10.1016/j.physa.2005.02.078</ext-link>
  15. Elton, E. J., &amp; Gruber, M. J. (1971). Improved Forecasting Through the Design of Homogeneous Groups. <em>The Journal of Business</em>, 44(4), 432. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1086/295403" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1086/295403</a>">https://doi.org/10.1086/295403</ext-link>
  16. Esmaeilpour Moghadam, H., Mohammadi, T., Feghhi Kashani, M., &amp; Shakeri, A. (2019). Complex networks analysis in Iran stock market: The application of centrality. <em>Physica A: Statistical Mechanics and Its Applications</em>, 531, 121800. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.physa.2019.121800" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.physa.2019.121800</a>">https://doi.org/10.1016/j.physa.2019.121800</ext-link>
  17. Feng, F., He, X., Wang, X., Luo, C., Liu, Y., &amp; Chua, T.-S. (2019). Temporal Relational Ranking for Stock Prediction. <em>ACM Transactions on Information Systems</em>, 37(2), 1–30. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1145/3309547" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1145/3309547</a>">https://doi.org/10.1145/3309547</ext-link>
  18. Groette, O. (2024, May 8). <em>The Best Performing Stock Markets In The World Since 1900 – Quantified Strategies For Traders And Investors</em>. Quantified Investment Strategies. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.quantifiedstrategies.com/best-performing-stock-markets-in-the-world/">https://www.quantifiedstrategies.com/best-performing-stock-markets-in-the-world/</ext-link>
  19. Gupta, R., &amp; Basu, P. K. (2011). Weak Form Efficiency In Indian Stock Markets. <em>International Business &amp; Economics Research Journal (IBER)</em>, 6(3). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.19030/iber.v6i3.3353" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.19030/iber.v6i3.3353</a>">https://doi.org/10.19030/iber.v6i3.3353</ext-link>
  20. Hajizadeh, E., Ardakani, H. D., &amp; Shahrabi, J. (2010). Application of data mining techniques in stock markets: A survey. <em>Journal of Economics and International Finance</em>, 2(7), 109–118. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://mineracaodedados.wordpress.com/wp-content/uploads/2012/12/application-of-data-mining-techniques-in-stock-markets.pdf">https://mineracaodedados.wordpress.com/wp-content/uploads/2012/12/application-of-data-mining-techniques-in-stock-markets.pdf</ext-link>
  21. History.com Editors. (2019, July 10). <em>Dow suffers largest single-day drop</em>. HISTORY. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.history.com/this-day-in-history/dow-suffers-largest-single-day-drop-great-recession">https://www.history.com/this-day-in-history/dow-suffers-largest-single-day-drop-great-recession</ext-link>
  22. Imeni, M., Bao, Z. K., &amp; Nozick, V. (2024). Multiscale Partial Correlation Analysis of Tehran Stock Market Indices: Clustering and Inter-Index Relationships. <em>Journal of Operational and Strategic Analytics,</em> 2(1), 1-10. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.56578/josa020101" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.56578/josa020101</a>">https://doi.org/10.56578/josa020101</ext-link>
  23. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. <em>Pattern Recognition Letters</em>, 31(8), 651–666. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.patrec.2009.09.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.patrec.2009.09.011</a>">https://doi.org/10.1016/j.patrec.2009.09.011</ext-link>
  24. Johnson, N. F., McDonald, M., Suleman, O., Williams, S., &amp; Howison, S. (2005). What shakes the FX tree? Understanding currency dominance, dependence, and dynamics (Keynote Address). <em>Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1117/12.618875" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1117/12.618875</a>">https://doi.org/10.1117/12.618875</ext-link>
  25. Kaufman, L., &amp; Rousseeuw, P. J. (1990). Finding Groups in Data. In <em>Wiley Series in Probability and Statistics</em>. John Wiley &amp; Sons, Inc. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/9780470316801" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/9780470316801</a>">https://doi.org/10.1002/9780470316801</ext-link>
  26. Kim, G.-H., &amp; Kim, S.-H. (2018). Variable Selection for Artificial Neural Networks with Applications for Stock Price Prediction. <em>Applied Artificial Intelligence</em>, 33(1), 54–67. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/08839514.2018.1525850" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/08839514.2018.1525850</a>">https://doi.org/10.1080/08839514.2018.1525850</ext-link>
  27. Kolluru, M., &amp; Suresh, V. (2020). A Cluster Analysis on Sustained Global Competitiveness for European Countries. <em>ECONOMICS</em>, 8(1), 7–22. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/eoik-2020-0006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/eoik-2020-0006</a>">https://doi.org/10.2478/eoik-2020-0006</ext-link>
  28. Lafabregue, B., Weber, J., Gançarski, P., &amp; Forestier, G. (2021). End-to-end deep representation learning for time series clustering: a comparative study. <em>Data Mining and Knowledge Discovery</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10618-021-00796-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10618-021-00796-y</a>">https://doi.org/10.1007/s10618-021-00796-y</ext-link>
  29. Laurini, M. P., &amp; Chaim, P. (2020). Brazilian stock market bubble in the 2010s. <em>SN Business &amp; Economics</em>, 1(1). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s43546-020-00005-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s43546-020-00005-w</a>">https://doi.org/10.1007/s43546-020-00005-w</ext-link>
  30. León, D., Arbey Aragón, Javier Organista Sandoval, Germán Hernández, Andrés Arévalo, &amp; Francisco, J. (2017). Clustering algorithms for Risk-Adjusted Portfolio Construction. <em>Procedia Computer Science</em>, 108, 1334–1343. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.procs.2017.05.185" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.procs.2017.05.185</a>">https://doi.org/10.1016/j.procs.2017.05.185</ext-link>
  31. Li, G., Wang, X., Meng, Z., &amp; Zhao, H. (2013). Seawater inrush assessment based on hydrochemical analysis enhanced by hierarchy clustering in an undersea goldmine pit, China. <em>Environmental Earth Sciences</em>, 71(12), 4977–4987. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s12665-013-2888-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12665-013-2888-8</a>">https://doi.org/10.1007/s12665-013-2888-8</ext-link>
  32. Li, M., &amp; Dempsey, M. (2018). The Fama and French three-factor model in developing markets: evidence from the Chinese markets. <em>Investment Management and Financial Innovations</em>, 15(1), 46–57. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.21511/imfi.15(1).2018.06" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21511/imfi.15(1).2018.06</a>">https://doi.org/10.21511/imfi.15(1).2018.06</ext-link>
  33. Kushnir, N., Kovshun, N., Adamchuk, T., Tymeichuk, Y., Tsaruk, D. (2023). Ukrainian Enterprises’ Equity Capital Financial Monitoring and Analysis of Its Impact on Profitability Indicators. <em>Collection of papers new economy,</em> 1, 1-16. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.61432/CPNE0101001k" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.61432/CPNE0101001k</a>">https://doi.org/10.61432/CPNE0101001k</ext-link>
  34. Marti, G., Nielsen, F., Bińkowski, M., &amp; Donnat, P. (2021). A Review of Two Decades of Correlations, Hierarchies, Networks and Clustering in Financial Markets. <em>Signals and Communication Technology</em>, 245–274. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-3-030-65459-7_10" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-030-65459-7_10</a>">https://doi.org/10.1007/978-3-030-65459-7_10</ext-link>
  35. Mastilo, Z., Štilić, A., Gligović, D., &amp; Puška, A. (2024). Assessing the banking sector of Bosnia and Herzegovina: An analysis of financial indicators through the MEREC and MARCOS methods. <em>Journal of Central Banking Theory and Practice,</em> 13(1), 167–197. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/jcbtp-2024-0008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/jcbtp-2024-0008</a>">https://doi.org/10.2478/jcbtp-2024-0008</ext-link>
  36. Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., &amp; Long, J. (2018). A Survey of Clustering With Deep Learning: From the Perspective of Network Architecture. <em>IEEE Access</em>, <em>6</em>, 39501–39514. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/access.2018.2855437" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/access.2018.2855437</a>">https://doi.org/10.1109/access.2018.2855437</ext-link>
  37. Mukherjee, K., &amp; Mishra, R. K. (2010). Stock market integration and volatility spillover: India and its major Asian counterparts. <em>Research in International Business and Finance</em>, 24(2), 235–251. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ribaf.2009.12.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ribaf.2009.12.004</a>">https://doi.org/10.1016/j.ribaf.2009.12.004</ext-link>
  38. Muramatsu, R., Pedro Raffy Vartanian, &amp; Gabriel. (2023). A Behavioral Interpretation of Volatility Patterns in Brazilian Stock Market: Analysis of Pre and Post-COVID-19 Periods from 2019 to 2021. <em>International Journal of Business and Management</em>, 18(4), 24–24. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5539/ijbm.v18n4p24" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5539/ijbm.v18n4p24</a>">https://doi.org/10.5539/ijbm.v18n4p24</ext-link>
  39. Musmeci, N., Aste, T., &amp; Di Matteo, T. (2015). Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods. <em>PLOS ONE</em>, 10(3), e0116201. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1371/journal.pone.0116201" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0116201</a>">https://doi.org/10.1371/journal.pone.0116201</ext-link>
  40. Nanda, S. R., Mahanty, B., &amp; Tiwari, M. K. (2010). Clustering Indian stock market data for portfolio management. <em>Expert Systems with Applications</em>, 37(12), 8793–8798. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.eswa.2010.06.026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.eswa.2010.06.026</a>">https://doi.org/10.1016/j.eswa.2010.06.026</ext-link>
  41. Nellore Naveen Reddy, &amp; Senthilkumar C. (2022). Energy Efficient Clustering Hierarchy in Wireless Sensor Network using Dynamic Clustering Approach ILEACH-ACHH Protocol Compared with LEACH-ACHH Protocol. <em>2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/iciptm54933.2022.9753955" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/iciptm54933.2022.9753955</a>">https://doi.org/10.1109/iciptm54933.2022.9753955</ext-link>
  42. Papenbrock, J., &amp; Schwendner, P. (2015). Handling risk-on/risk-off dynamics with correlation regimes and correlation networks. <em>Financial Markets and Portfolio Management</em>, 29(2), 125–147. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11408-015-0248-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11408-015-0248-2</a>">https://doi.org/10.1007/s11408-015-0248-2</ext-link>
  43. Pastor, L., &amp; Veronesi, P. (2009). Learning in Financial Markets. <em>Annual Review of Financial Economics</em>, 1(1), 361–381. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1146/annurev.financial.050808.114428" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1146/annurev.financial.050808.114428</a>">https://doi.org/10.1146/annurev.financial.050808.114428</ext-link>
  44. Prime, S. (2020). Forecasting the changes in daily stock prices in Shanghai Stock Exchange using Neural Network and Ordinary Least Squares Regression. <em>Investment Management and Financial Innovations</em>, 17(3), 292–307. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.21511/imfi.17(3).2020.22" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21511/imfi.17(3).2020.22</a>">https://doi.org/10.21511/imfi.17(3).2020.22</ext-link>
  45. Reddy, C. O., &amp; K, M. (2020). Hierarchy based firefly optimized K-means clustering for complex question answering. <em>Indonesian Journal of Electrical Engineering and Computer Science</em>, 17(1), 264. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.11591/ijeecs.v17.i1.pp264-272" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.11591/ijeecs.v17.i1.pp264-272</a>">https://doi.org/10.11591/ijeecs.v17.i1.pp264-272</ext-link>
  46. Renugadevi, T., Ezhilarasie, R., Sujatha, M., &amp; Umamakeswari, A. (2016). Stock Market Prediction using Hierarchical Agglomerative and K-Means Clustering Algorithm. <em>Indian Journal of Science and Technology</em>, <em>9</em>(48). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.17485/ijst/2016/v9i48/108029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.17485/ijst/2016/v9i48/108029</a>">https://doi.org/10.17485/ijst/2016/v9i48/108029</ext-link>
  47. Samatova, N., Gov, S., Ostrouchov, G., Gov, O., Geist, A., &amp; Gov, G. (2002). <em>Distributed and Parallel Databases,</em> 11, 157–180. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.freescience.org/tolik/publications/papers/pdf_papers/2002_Samatova_RACHET.pdf">https://www.freescience.org/tolik/publications/papers/pdf_papers/2002_Samatova_RACHET.pdf</ext-link>
  48. Samuelson, P. A. (1976). Is Real-World Price a Tale Told by the Idiot of Chance? <em>The Review of Economics and Statistics</em>, 58(1), 120. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2307/1936018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2307/1936018</a>">https://doi.org/10.2307/1936018</ext-link>
  49. Semko, R. (2019). Machine learning for robo-advisors: testing for neurons specialization. <em>Investment Management and Financial Innovations</em>, 16(4), 205–214. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.21511/imfi.16(4).2019.18" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21511/imfi.16(4).2019.18</a>">https://doi.org/10.21511/imfi.16(4).2019.18</ext-link>
  50. Sharma, M., Sharma, S., &amp; Singh, G. (2018). Performance Analysis of Statistical and Supervised Learning Techniques in Stock Data Mining. <em>Data</em>, 3(4), 54. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/data3040054" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/data3040054</a>">https://doi.org/10.3390/data3040054</ext-link>
  51. Topić – Pavković, B. (2024). Challenges to Global Monetary and Financial Stability. <em>Collection of papers new economy,</em> 2, 31-45. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.61432/CPNE0201031t" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.61432/CPNE0201031t</a>">https://doi.org/10.61432/CPNE0201031t</ext-link>
  52. Vázquez, A. (2003). Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. <em>Physical Review E</em>, 67(5). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1103/physreve.67.056104" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1103/physreve.67.056104</a>">https://doi.org/10.1103/physreve.67.056104</ext-link>
  53. Wang, J., Huang, X., &amp; Wang, X. (2023). Risk Spillovers and Hedging in the Chinese Stock Market: An Asymmetric VAR-BEKK-AGARCH Analysis. <em>Acadlore Transactions on Applied Mathematics and Statistics,</em> 1(3), 111-129. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.56578/atams010301" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.56578/atams010301</a>">https://doi.org/10.56578/atams010301</ext-link>
  54. Wang, Y.-J., &amp; Lee, H.-S. (2008). A clustering method to identify representative financial ratios. <em>Information Sciences</em>, 178(4), 1087–1097. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ins.2007.09.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ins.2007.09.016</a>">https://doi.org/10.1016/j.ins.2007.09.016</ext-link>
  55. Wei-Shan Hu, J., Lee, Y.-H., &amp; Chen, Y.-C. (2018). Mutual fund herding behavior and investment strategies in Chinese stock market. <em>Investment Management and Financial Innovations</em>, 15(2), 87–95. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.21511/imfi.15(2).2018.08" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21511/imfi.15(2).2018.08</a>">https://doi.org/10.21511/imfi.15(2).2018.08</ext-link>
  56. World Federation of Exchanges database. (n.d.). <em>Market capitalization of listed domestic companies (current US$) | Data</em>. Data.worldbank.org; World Bank. Retrieved May 26, 2024, <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://data.worldbank.org/indicator/CM.MKT.LCAP.CD?end=2020&amp;most_recent_value_desc=true&amp;start=1975">https://data.worldbank.org/indicator/CM.MKT.LCAP.CD?end=2020&amp;most_recent_value_desc=true&amp;start=1975</ext-link>
  57. Zhang, Y., Lee, G. H. T., Wong, J. C., Kok, J. L., Prusty, M., &amp; Cheong, S. A. (2011). Will the US economy recover in 2010? A minimal spanning tree study. <em>Physica A: Statistical Mechanics and Its Applications</em>, 390(11), 2020–2050. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.physa.2011.01.020" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.physa.2011.01.020</a>">https://doi.org/10.1016/j.physa.2011.01.020</ext-link>
DOI: https://doi.org/10.2478/eoik-2025-0041 | Journal eISSN: 2303-5013 | Journal ISSN: 2303-5005
Language: English
Page range: 283 - 303
Submitted on: Dec 23, 2024
Accepted on: May 16, 2025
Published on: Jun 5, 2025
Published by: Oikos Institut d.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2025 Vidya Suresh, Mythili Kolluru, Vaheed Ubaidullah, published by Oikos Institut d.o.o.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.