References
- Avotniece Z., Aniskevich S., Briede A., Klavins M. 2017. Long-term changes in the frequency and intensity of thunderstorms in Latvia. Boreal Environment Research, 22: 415–430.
- Bielec-Bąkowska Z., Taszarek M., Kolendowicz L. 2021. Change of Thunderstorms and Tornadoes. [in:] M. Falarz (ed.), Climate change in Poland: past, present, future. Springer Nature Switzerland AG: 421–441.
- Crowe C., Market P., Pettegrew B., Melick C., Podzimek J. 2006. An investigation of thundersnow and deep snow accumulations. Geophysical Research Letters, 33: L24812.
- Duniec G., Pilguj N., Zamajtys M., Stachura G., Szuster P., Pyrc R. 2023. Silny wiatr oraz trąba powietrza i burze w dniach 21-23 grudnia 2023 roku [Strong wind, tornado and thunderstorms on December 21-23, 2023]. IMGW-PIB. https://cmm.imgw.pl/?p=39969 (03.02.2024).
- Fink A., Brücher T., Ermert V., Krüger A., Pinto J.G. 2009. The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change. Natural Hazards and Earth System Sciences, 9, 2: 405–423.
- Förchtgott J. 1969. Winter thunderstorms in the Middle European Area. Swiss Aero Revue, 44: 205–207.
- Ghasemifard H., Groenemeijer P., Battaglioli F., Púčik T. 2024. Do changing circulation types raise the frequency of summertime thunderstorms and large hail in Europe? Environmental Research: Climate, 3, 1: 015008.
- IPCC. 2021. [in:] V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 239.
- Kendall M.G. 1975. Rank correlation methods (4th ed.). Charles Griffin.
- Konarski J., Gajda W., Dziewit Z., Barański P. 2008. Severe winter thunderstorm in Poland, case study. 20th International Lighting Detection Conference, 21–23 April, Tuscon, USA.
- Letcher T., Steiger S. 2010. Lake-effect lighting climatology of the Great Lakes. National Weather Digest, 34, 2: 157–168.
- Ludwig P., Pinto J.G., Hoepp S.A., A., Fink A.H., Gray S.L. 2015. Secondary cyclogenesis along an occluded front leading to damaging wind gusts: Windstorm Kyrill, January 2007. Monthly Weather Review, 143: 1417–1437.
- Mann H.B. 1945. Non–parametric tests against trend. Econometrica, 13, 3: 245–259.
- Market P.S., Halcomb C.E., Ebert R.L. 2002. A Climatology of Thundersnow Events over the Contiguous United States. Weather and Forecasting, 17: 1290–1295.
- Matuszko D. 2014. Zachmurzenie i burze w aspekcie ekstremalnych zdarzeń atmosferycznych [Cloudiness and Thunderstorms in the Context of Extreme Atmospheric Events]. Prace Geograficzne, 139: 79–92.
- Matuszko D., Piotrowicz K., Twardosz M. 2001. Związki między zachmurzeniem, opadami i temperaturą powietrza w Krakowie w ostatnim stuleciu [Relation between cloudiness, precipitation and air temperature in Krakow in the last century]. Prace i Studia Geograficzne, 29: 113–119.
- Munzar J., Franc M. 2003. Winter thunderstorms in central Europe in the past and the present. Atmospheric Research, 67–68: 501–515.
- Piotrowicz K., Bielec-Bąkowska Z., Krzyworzeka K. 2020. Groźne zjawiska meteorologiczne w Krakowie i powiecie krakowskim w świetle interwencji straży pożarnej i policji [Dangerous meteorological phenomena in Krakow and the Krakow district in the light of the intervention of the firebrigade and police]. Instytut Geografii i Gospodarki Przestrzennej, Uniwersytet Jagielloński, Kraków.
- Pruchnicki J. 1999. W sprawie pojęć dotyczących globalnych zmian klimatu [On global climate change concepts]. Wiadomości IMGW, 22, 4: 35–42.
- Púčik T., Groenemeijer P., Rädler A.T., Tijssen L., Nikulin G., Prein A.F., Meijgaard E., Fealy R., Jacob D., Teichmann C. 2017. Future changes in European severe convection environments in a regional climate model ensemble. Journal of Climate, 30: 6771–6794.
- Racko S., Simon A., Sokol A. 2002. Niektoré z príčinbúrok v zimnomobdobí [Some of the causes of thunderstorm occurrence during winter season]. Meteorologické zprávy, 55, 3: 69–81.
- Schultz D.M., Vavrek, R.J. 2009. An overview of thundersnow. Weather, 64: 274–277.
- Sulan J. 2002. Sněhové bouře 22. února a tornáda 31. květnaroku 2001z pohledu koncepčních modelů [Snow storms on February 22 and tornadoes on May 31 2001 from the viewpoint of conceptual models]. Meteorologické zprávy, 55, 3: 65–68.
- Sun B., Groisman P.Ya., Mokhov I.I. 2001. Recent changes in cloud-type frequency and inferred increases in convection over the United States and the Former USRR. Journal of Climate, 14: 1864–1880.
- Taszarek M., Allen J.T., Brooks H.E., Pilguj N., Czernecki B. 2021. Differing trends in United States and European severe thunderstorm environments in a warming climate Bulletin of the American Meteorological Society, 102, 2: E296–E322.
- Taszarek M., Czernecki B., Szuster P. 2023. ThundeR – a rawinsonde package for processing convective parameters and visualizing atmospheric profiles. 11th European Conference on Severe Storms, Bucharest, Romania, 8–12 May 2023, ECSS2023–28.
- Wade A.R., Parker M.D. 2021. Dynamics of Simulated High-Shear, Low-CAPE Supercells. Journal of the Atmospheric Sciences, 78: 1389–1410.
- Wibig J. 2008. Cloudiness variations in Łódź in the second half of the 20th century. International Journal of Climatology, 28, 4: 479–491.
- Wisner B., Blaikie P., Cannon T., Davis I. 2004. At Risk: Natural hazards, people’s vulnerability and disasters. Routledge, New York.