Have a personal or library account? Click to login
Land use and land cover change in East Java from 2015 to 2021: Use optical imagery and Google Earth engine Cover

Land use and land cover change in East Java from 2015 to 2021: Use optical imagery and Google Earth engine

Open Access
|Mar 2024

References

  1. Aksoy H., Kaptan S. 2020. Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model. Geocarto International, 6049.
  2. Amini S., Saber M., Rabiei-Dastjerdi H., Homayouni S. 2022. Urban Land Use and Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series. Remote Sensing, 14(11), 2654.
  3. BIG. 2018. Peta Rupa Bumi Indonesia Skala 1:25.000.
  4. BPS-Statistics Indonesia. 2021. Luas Panen, Produksi, dan Produktivitas Padi Menurut Provinsi 2019-2021 [Harvested Area, Production, and Productivity of Paddy Based on Province 2019-2021]. BPS-Statistics Indonesia.
  5. BPS-Statistics of Jawa Timur Province. 2021. Provinsi Jawa Timur dalam Angka 2021 [Jawa Timur Province in Figures 2021]. BPS-Statistics of Jawa Timur Province.
  6. BPS-Statistics of Jawa Timur Province. 2023. Provinsi Jawa Timur dalam Angka 2023 [Jawa Timur Province in Figures 2023]. BPS-Statistics of Jawa Timur Province.
  7. BPS-Statistics of Jember Regency. 2021. Kabupaten Jember dalam Angka 2021 [Jember Regency in Figures 2021]. BPS-Statistics of Jember Regency.
  8. Breiman L. 2001. Random Forests. Machine Learning, 45(1): 5–32.
  9. Camargo F.F., Sano E.E., Almeida C.M., Mura J.C., Almeida T. 2019. A comparative assessment of machine-learning techniques for land use and land cover classification of the Brazilian tropical savanna using ALOS-2/PALSAR-2 polarimetric images. Remote Sensing, 11(13), 1600.
  10. Campbell J.B. 2008. Introduction to Remote Sensing, 4th ed. (4th ed.). The Guilford Press.
  11. Campbell J.B., Wynne R H. 2011. Introduction to Remote Sensing, Fifth Edition. Guilford
  12. East Java Governor’s Decree. 2020. Keputusan Gubernur Jawa Timur Nomor 188/538/KPTS/013/2020 Tentang Upah Minimum Kabupaten/Kota di Jawa Timur Tahun 2021 [East Java Governor’s Decree Number 177/538/KPTS/013/2020 About Minimum Wages of Municipality/Regency in East Java Province].
  13. Fonji S.F., Taff G.N. 2014. Using satellite data to monitor land-use land-cover change in northeastern Latvia. SpringerPlus, 3(1), 61.
  14. Foody G.M. 2020. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment, 239, 111630.
  15. Gashu K., Gebre-Egziabher T. 2018. Spatio-temporal trends of urban land use/land cover and green infrastructure change in Bahir Dar and Hawassa in two Ethiopian cities. Environmental Systems Research, 7(8).
  16. Gislason P.O., Benediktsson J.A., Sveinsson J.R. 2006. Random forests for land cover classification. Pattern Recognition Letters, 27(4): 294–300.
  17. Global Volcanism Program. 2013. Semeru (263300) in Volcanoes of the World. Smithsonian Institution, v.4.10.6.
  18. Goodin D.G., Anibas K.L., Bezymennyi M. 2015. Mapping land cover and land use from object-based classification: an example from a complex agricultural landscape. International Journal of Remote Sensing, 36(18): 4702–4723.
  19. Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18–27.
  20. Hariyono M. I. (n.d.). Kajian Perubahan Penutup Lahan Peta Rupabumi pada Skala yang Berbeda.
  21. Hassan Z., Shabbir R., Ahmad S. S., Malik A. H., Aziz N., Butt A., Erum S. 2016. Dynamics of land use and land cover change (LULCC) using geospatial techniques: a case study of Islamabad Pakistan. SpringerPlus, 5(1).
  22. Hu Y., Batunacun Zhen L., Zhuang D. 2019. Assessment of Land-Use and Land-Cover Change in Guangxi, China. Scientific Reports, 9(1): 1–13.
  23. Khoshnood Motlagh S., Sadoddin A., Haghnegahdar A., Razavi S., Salmanmahiny A., Ghorbani K. 2021. Analysis and prediction of land cover changes using the land change modeller (LCM) in a semiarid river basin in Iran. Land Degradation and Development, 32(10): 3092–3105.
  24. Lin L., Hao Z., Post C.J., Mikhailova E.A., Yu K., Yang L., Liu J. 2020. Monitoring land cover change on a rapidly urbanising island using Google Earth engine. Applied Sciences (Switzerland), 10(20), 1–16.
  25. Lin S.-K. 2013. Introduction to Remote Sensing. 5th Edition. Campbell J.B. & Wynne R.H. (eds). Remote Sensing, 5, 1: 282–283.
  26. Mohajane M., Essahlaoui A., Oudija F., Hafyani M. El Hmaidi A. El OualiA. El Randazzo G., Teodoro A. C. 2018. Land use/land cover (LULC) using Landsat data series (MSS, TM, ETM+, and OLI) in Azrou forest in the central middle atlas of Morocco. Environments - MDPI, 5(12): 1–16.
  27. National Aeronautics and Space Administration [NASA] JPL. 2013. NASA Shuttle Radar Topography Mission Global 1 arc second [Data set]. NASA EOSDIS Land Processes DAAC.
  28. Pan X., Wang Z., Gao Y., Dang X., Han Y. 2021. Detailed and automated land use/land cover classification using machine learning algorithms in Google Earth Engine. Geocarto International, 0(0): 1–18.
  29. Patel N., Kaushal B.K. 2010. Improvement of User’s Accuracy through Classification of Principal Component Images and Stacked Temporal Images. Geospatial Information Science, 13(4), 243–248.
  30. Poveda-Sotelo Y., Bermúdez-Cella M.A., Gil-Leguizamón P. 2022. Evaluation of supervised classification methods for estimating spatiotemporal changes in the Merchán and Telecom paramos, Colombia. Boletin de Geologia, 44(2): 51–72.
  31. Sentinel 2 PDGS Project Team. 2014. Sentinel-2 Calibration and Validation Plan for the Operational Phase Bianca Hoersch (Issue 1). ESA Centre for Earth Observation.
  32. Shih H. Chien Stow D.A., Chang K.C., Roberts D.A., Goulias K.G. 2021. From land cover to land use: Applying random forest classifier to Landsat imagery for urban land-use change mapping. Geocarto International, 0(0): 1–24.
  33. Singh S.K., Laari P.B., Mustak S., Srivastava P.K., Szabó S. 2018. Modeling land use land cover change using earth observation datasets of Tons River Basin, Madhya Pradesh, India. Geocarto International, 33(11): 1202–1222.
  34. Story M., Congalton R.G. 1986. Remote Sensing Brief Accuracy Assessment: A User’s Perspective. Photogrammetric Engineering and Remote Sensing, 52(3): 397–399.
  35. Susilohadi. 1995. Late tertiary and quaternary geology of the East Java Basin, Indonesia [Doctor of Philosophy thesis]. University of Wollongong.
  36. Zurqani H.A., Post C.J., Mikhailova E.A., Schlautman M.A., Sharp J.L. 2018. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 69: 175–185.
Language: English
Page range: 69 - 80
Submitted on: Aug 14, 2023
Accepted on: Feb 6, 2024
Published on: Mar 13, 2024
Published by: University of Silesia in Katowice, Faculty of Natural Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Marga Mandala, Indarto Indarto, Nova Nevila Rodhi, Akhmad Andi Saputra, Farid Lukman Hakim, published by University of Silesia in Katowice, Faculty of Natural Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.