Have a personal or library account? Click to login

Swelling potential of volcanic residual soils in Sumatra (Indonesia) in relation to environmental issues

Open Access
|Dec 2020

References

  1. Adem H., Vanapalli S. 2014. Soil–environment interactions modelling for expansive soils. Environmental Geotechnics, 3, 3: 178–187.10.1680/envgeo.13.00089
  2. Aditian A., Kubota T., Shinohara Y. 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318: 101–111.10.1016/j.geomorph.2018.06.006
  3. Al-Rawas A.A., Goosen M.F.A. 2006. Expansive soils: recent advances in characterization and treatment. Taylor & Francis, London.10.1201/9780203968079
  4. Al-Yaqoub T.H., Parol J., Znidarcic D. 2017. Experimental investigation of volume change behavior of swelling soil. Applied Clay Science, 137: 22–29.10.1016/j.clay.2016.11.018
  5. Anonymous, 2020. Quantitative XRD Analysis Software. Siroquant XRD Software, https://www.siroquant.com/ accessed on October, 25, 2020.
  6. Arancibia-Miranda N., Baltazar S.E., García A., Muñoz-Lira D., Sepúlveda P., Rubio M. A., Altbir D. 2016. Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. Journal of Hazardous Materials, 301: 371–380.10.1016/j.jhazmat.2015.09.007
  7. ASTM D422. 2007. Standard Test Method for Particle-Size Analysis of Soils. Astm, D422-63(Reapproved): 1–8.
  8. Astm, International A. 2017. ASTM D4318 - 17e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
  9. ASTM. 2017. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM Standard Guide, D2487-17: 1–10.
  10. Bogie I. 1998. The application of a volcanic facies model to an andesitic stratovolcano hosted geothermal system at Wayang Windu, Java, Indonesia. Proceedings of 20th NZ Geothermal Workshop, 1998.
  11. Brady N.C., Weil R.R. 2004. Elements of the Nature and Properties of Soils. Journal of Chemical Information and Modeling, 53, 9: 1–606.
  12. Buol S., Southard R., Graham R., McDaniel P. 2011. Soil genesis and classification. John Wiley & Sons, Chichester.10.1002/9780470960622
  13. Chen F.H. 1975. Foundations on Expansive Soils. Developments in Geotechnical Engineering, 12. Elsevier, Amsterdam, Oxford, New York.
  14. Chesworth W. 2008. Encyclopedia of Soil Science. Springer Netherlands.10.1007/978-1-4020-3995-9
  15. Churchman G.J., Lowe D. J. 2012. Alteration, Formation, and Occurrence of Minerals in Soils (Vol. 12072). CRC Press.
  16. Çimen Ö., Keskin S.N., Yıldırım H. 2012. Prediction of Swelling Potential and Pressure in Compacted Clay. Arabian Journal for Science and Engineering, 37, 6: 1535–1546.10.1007/s13369-012-0268-4
  17. Durn G. 2003. Terra rossa in the Mediterranean region: Parent materials, composition and origin. Geologia Croatica, 56, 1: 83–100.10.4154/GC.2003.06
  18. Emarah D.A., Seleem S.A. 2018. Swelling soils treatment using lime and sea water for roads construction. Alexandria Engineering Journal, 57, 4: 2357–2365.10.1016/j.aej.2017.08.009
  19. Estabragh A.R., Pereshkafti M.R.S., Parsaei B., Javadi A.A. 2013. Stabilised expansive soil behaviour during wetting and drying. International Journal of Pavement Engineering, 14, 4: 418–427.10.1080/10298436.2012.746688
  20. Faezehossadat K., Jeff B. 2016. Expansive Soil: Causes and Treatments. I-Manager’s Journal on Civil Engineering, 6, 3: 1.10.26634/jce.6.3.8083
  21. Fauzi R.R., Sophian R.I., Muslim D., Haryanto I. 2017. Identification of Expansive Soils as Weathering Product of Volcanic Materials in Jatinangor Area, West Java, Indonesia. Euro-Mediterranean Conference for Environmental Integration. Springer: 1829–1832.10.1007/978-3-319-70548-4_530
  22. Holtz W., Gibbs H. 1956. Engineering Properties of Expansive Clays. Transactions ASCE, 121: 641–663.10.1061/TACEAT.0007325
  23. Indarto S., Setiawan I., Zulkarnain I., Fiqih F.M., Fauzi A. 2007. Alterasi Dan Mineralisasi Hidrotermal Pada Batuan Volkanik Formasi Hulusimpang Daerah Bengkulu Dan Lampung di Kawasan Sayap Barat Pegunungan Bukit Barisan, Sumatera. Prosiding Seminar Geoteknologi Kontribusi Ilmu Kebumian Dalam Pembangunan Berkelanjutan Bandung 3 Desember 2007: 165–173.
  24. Iqbal P., Muslim D., Zakaria Z., Permana H., Syahbana A.J., Yunarto J. 2020. Geotechnical characteristics of volcanic red clay soil related to geoengineering problem in sekincau, sumatra, Indonesia. International Journal of Advanced Science and Technology, 29, 7: 3166–3173.
  25. Issaka S., Ashraf M.A. 2017. Impact of soil erosion and degradation on water quality: a review. Geology, Ecology, and Landscapes, 1, 1: 1–11.10.1080/24749508.2017.1301053
  26. Jiang H., Wan B., Inyang H.I., Liu J., Gu K., Shi B. 2013. Role of expansive soil and topography on slope failure and its countermeasures, Yun County, China. Engineering Geology, 152, 1: 155–161.10.1016/j.enggeo.2012.10.020
  27. Joussein E., Petit S., Churchman J., Then B., Righi D., Delvaux B. 2005. Halloysite clay minerals — a review. Clay Minerals, 40, 4: 383–426.10.1180/0009855054040180
  28. Kayabali K., Demir S. 2011. Measurement of swelling pressure: Direct method versus indirect methods. Canadian Geotechnical Journal, 48, 3: 354–364.10.1139/T10-074
  29. Kirby J. M., Bernardi A. L., Ringrose-Voase A.J., Young R., Rose H. 2003. Field swelling, shrinking, and water content change in a heavy clay soil. Australian Journal of Soil Research, 41, 5: 963–978.10.1071/SR02055
  30. Latifi N., Eisazadeh A., Marto A., Meehan C.L. 2017. Tropical residual soil stabilization: A powder form material for increasing soil strength. Construction and Building Materials, 147: 827–836.10.1016/j.conbuildmat.2017.04.115
  31. Lattimore M.S., Glinow V.M.A. 2010. Organizational Behavior: Emerging Knowledge and Practice for the Real World (8th ed.). McGraw Hill Higher Education, New York.
  32. Maeda H., Sasaki T., Furuta K., Takashima K., Umemura A., Kohno M. 2012. Relationship between landslides, geologic structures, and hydrothermal alteration zones in the Ohekisawa-Shikerebembetsugawa landslide area, Hokkaido, Japan. Journal of Earth Science and Engineering, 2, 2012: 317–327.
  33. Mani Bharathi A., Ravichandran P. T., Krishnan K.D. 2019. Potential use of dolomite hydrated lime in sustainable strength improvement of clayey soil. Journal of Green Engineering, 9, 4: 489–501.
  34. Mohammed A.K., Abed B.S. 2020. Water distribution and interference of wetting front in stratified soil under a continues and an intermittent subsurface drip irrigation. Journal of Green Engineering, 10, 2: 268–286.
  35. Mutlutürk M., Balcıoğlu E. 2015. Geo-Engineering Properties and Swelling Potential of Quaternary Lacustrine Clays in North of Burdur, Turkey. Arabian Journal for Science and Engineering, 40, 7: 1917–1931.10.1007/s13369-014-1505-9
  36. Phuong T. T., Shrestha R. P., Chuong H. V. 2017. Simulation of Soil Erosion Risk in the Upstream Area of Bo River Watershed. [in:] G. Shivakoti, U. Pradhan, H. Helmi (Eds). Redefining Diversity & Dynamics of Natural Resources Management in Asia, 3: 87–99.10.1016/B978-0-12-805452-9.00006-0
  37. Pincus H., Abduljauwad S., Al-Sulaimani G. 1993. Determination of Swell Potential of Al-Qatif Clay. Geotechnical Testing Journal, 16, 4: 469.10.1520/GTJ10287J
  38. Prakash K., Sridharan A. 2004. Free swell ratio and clay mineralogy of fine-grained soils. Geotechnical Testing Journal, 27, 2: 220–225.10.1520/GTJ10860
  39. Pusch R., Yong R.N. 2006. Microstructure of smectite clays and engineering performance. CRC Press, Abingdon, New York.10.1201/9781482265675
  40. Putra I. D., Titisari A.D., Husna H.Z.K. 2019. Clay mineralogy of landslide occurrences in hydrothermally altered area: A case study of Durensari Area, Purworejo, Central Java. E3S Web of Conferences, 76.10.1051/e3sconf/20197602008
  41. Qi S., Vanapalli S.K. 2016. Influence of swelling behavior on the stability of an infinite unsaturated expansive soil slope. Computers and Geotechnics, 76: 154–169.10.1016/j.compgeo.2016.02.018
  42. Rajabi A., Rastad E., Alfonso P., Canet C. 2012. Geology, ore facies and sulphur isotopes of the Koushk vent-proximal sedimentary-exhalative deposit, Posht-e-Badam Block, Central Iran. International Geology Review, 54, 14: 1635–1648.10.1080/00206814.2012.659106
  43. Selles A., Deffontaines B., Hendrayana H., Violette S. 2015. The eastern flank of the Merapi volcano (Central Java, Indonesia): Architecture and implications of volcaniclastic deposits. Journal of Asian Earth Sciences, 108: 33–47.10.1016/j.jseaes.2015.04.026
  44. She J., Lu Z., Yao H., Fang R., Xian S. 2019. Experimental Study on the Swelling Behavior of Expansive Soil at Different Depths under Unidirectional Seepage. Applied Sciences, 9, 6: 1233.10.3390/app9061233
  45. Skempton, A. 1953. The colloidal activity of clays. Selected Papers on Soil Mechanics, 106–118.
  46. Soltani A., Taheri A., Khatibi M., Estabragh A.R. 2017. Swelling Potential of a Stabilized Expansive Soil: A Comparative Experimental Study. Geotechnical and Geological Engineering, 35, 4: 1717–1744.10.1007/s10706-017-0204-1
  47. Stell E., Guevara M., Vargas R. 2019. Soil swelling potential across Colorado: A digital soil mapping assessment. Landscape and Urban Planning, 190: 103599.10.1016/j.landurbplan.2019.103599
  48. Stetsyuk V., Veselova E. 2017. Theoretical and methodological foundations of the ecological and geomorphological study of the soil cover of the central part of the northern Black Sea coast. Visnyk Kyivskogo natsionalnogo universytetu, Geografiya [Bulletin of Taras Shevchenko National University of Kyiv, Geography], 1–2 (66–67): 49–53.10.17721/1728-2721.2017.66.6
  49. Stewart R.D., Abou Najm M.R., Rupp D.E., Selker J.S. 2016. Modeling multidomain hydraulic properties of shrink-swell soils. Water Resources Research, 52, 10: 7911–7930.10.1002/2016WR019336
  50. Tang C.-S., Shi B., Liu C., Suo W.-B., Gao L. 2011. Experimental characterization of shrinkage and desiccation cracking in thin clay layer. Applied Clay Science, 52, 1–2: 69–77.10.1016/j.clay.2011.01.032
  51. Taqi A.H., Al Nuaimy Q.A.M., Karem G.A. 2016. Study of the properties of soil in Kirkuk, IRAQ. Journal of Radiation Research and Applied Sciences, 9, 3: 259–265.10.1016/j.jrras.2016.02.006
  52. Uddin F. 2018. Montmorillonite: An Introduction to Properties and Utilization. Current Topics in the Utilization of Clay in Industrial and Medical Applications, Mansoor Zoveidavianpoor, IntechOpen.10.5772/intechopen.77987
  53. Van Der Merwe D.H. 1964. The prediction of heave from the plasticity index and percentage clay fraction of soils. The Civil Engineer in South Africa, 6, 6: 103–107.
  54. Velde P., Barré P. 2009. Soils, plants and clay minerals: mineral and biologic interactions. Springer-Verlag, Berlin, Heidelberg.10.1007/978-3-642-03499-2
  55. Verma S.P., Rivera-Gómez M.A. 2013. Computer programs for the classification and nomenclature of igneous rocks. Episodes, 36, 2: 115–124.10.18814/epiiugs/2013/v36i2/005
  56. Weil R.R., Brady N.C. 2016. The Nature and Properties of Soils (15th ed.). Pearson Press, Upper Saddle River.
  57. Wesley L. 2009. Behaviour and geotechnical properties of residual soils and allophane clays. Obras y Proyectos, 6: 5–10.
  58. Wesley L.D. 2013. Residual soils and the teaching of soil mechanics. 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, 4: 3479–3482.
  59. Wijaya I.P.K., Zangel C., Straka W., Ottner F. 2017. Geological aspects of landslides in volcanic rocks in a geothermal area (kamojang Indonesia). [in:] M. Mikoš, V. Vilímek, Y. Yin, K. Sassa (Eds) Advancing Culture of Living with Landslides. WLF 2017. Springer, Cham: 429–437.10.1007/978-3-319-53483-1_51
  60. Wilson M.J. 2004. Weathering of the primary rock-forming minerals: processes, products and rates. Clay Minerals, 39, 3: 233–266.10.1180/0009855043930133
  61. Wilson M.J. 2006. Factors of soil formation: Parent material. As exemplified by a comparison of granitic and basaltic soils. [in:] R. Scalenghe, G. Certini (Eds) Soils: Basic Concepts and Future Challenges. Cambridge University Press, Cambridge: 113–130.10.1017/CBO9780511535802.010
  62. Wilson S.G., Lambert J.J., Nanzy M., Dahlgren R. A. 2017. Soil genesis and mineralogy across a volcanic lithosequence. Geoderma, 285: 301–312.10.1016/j.geoderma.2016.09.013
  63. Woodward J., Lundgren R. 1962. Prediction of Swelling Potential for Compacted Clays. Journal of the Soil Mechanics and Foundations Division, 88, 3: 53–88.10.1061/JSFEAQ.0000431
  64. Wyering L., Villeneuve M., Wallis I., Siratovich P., Kennedy B., Gravley D., Cant J. 2014. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 288: 76–93.10.1016/j.jvolgeores.2014.10.008
  65. Xu H., Cheng Z.L., Huang B., Pan J.J. 2014. The mechanism of inhibiting swelling deformation and slope instability of expansive soils by replacement method. Tehnicki Vjesnik, 21, 5: 1057–1063.
  66. Yang R., Xiao P., Qi S. 2019. Analysis of slope stability in unsaturated expansive soil: a case study. Frontiers in Earth Science, 7: 292.10.3389/feart.2019.00292
  67. Yoo K., Amundson R., Heimsath A. M., Dietrich W. E. 2006. Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle. Geoderma, 130, 1–2: 47–65.10.1016/j.geoderma.2005.01.008
  68. Zhang G.H., Jiao Y.Y., Ma C.X., Wang H., Chen L.B., Tang Z.C. 2018. Alteration characteristics of granite contact zone and treatment measures for inrush hazards during tunnel construction – A case study. Engineering Geology, 235: 64–80.10.1016/j.enggeo.2018.01.022
Language: English
Page range: 1 - 10
Submitted on: Jul 8, 2020
Accepted on: Nov 16, 2020
Published on: Dec 10, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Prahara Iqbal, Dicky Muslim, Zufialdi Zakaria, Haryadi Permana, Nugroho A. Satriyo, Arifan J. Syahbana, Yunarto,, Nur Khoirullah, Abdul W. Asykarullah, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.