Have a personal or library account? Click to login
Radar reflectivity signatures and possible lead times of warnings for very large hail in Poland based on data from 2007-2015 Cover

Radar reflectivity signatures and possible lead times of warnings for very large hail in Poland based on data from 2007-2015

Open Access
|Sep 2020

References

  1. Amburn S.A., Wolf P. L. 1997. VIL Density as a Hail Indicator. Weather and Forecasting, 12: 473–478.
  2. Bieringer P., Ray P.S. 1996. A Comparison of Tornado Warning Lead Times with and without NEXRAD Doppler Radar. Weather and Forecasting, 11: 47–52.
  3. Brotzge J., Erickson S. 2009. NWS Tornado Warnings with Zero or Negative Lead Times. Weather and Forecasting, 24: 140–154.
  4. Chisholm A.J., Renick J.H. 1972. The kinematics of multicell and supercell Alberta hailstorms. Alberta hail studies 1972. Research Council of Alberta Hail Studies Report, 72, 2: 24–31.
  5. Czernecki B., Taszarek M., Kolendowicz L., Konarski J. 2016. Relationship between human observations of thunderstorms and the PERUN lightning detection network in Poland. Atmospheric Research, 167: 118–128.
  6. Czernecki B., Taszarek M., Marosz M., Kolendowicz L., Półrolniczak M., Wyszogrodzki A., Szturc J. 2019. Application of machine learning to large hail prediction – the importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5. Atmospheric Research, 227, 1: 249–262.10.1016/j.atmosres.2019.05.010
  7. Delobbe L., Holleman I., 2006. Uncertainties in radar echo top heights used for hail detection. Meteorological Applications, 13: 361–374.10.1017/S1350482706002374
  8. Donavon R.A., Jungbluth K.A, 2007. Evaluation of a Technique for Radar Identification of Large Hail across the Upper Midwest and Central Plains of the United States. Weather and Forecasting, 22: 244–254.10.1175/WAF1008.1
  9. Doswell C.A. 2001. Severe Convective Storms – An Overview. [in:] C.A. Doswell (Eds.) Severe Convective Storms, American Meteorological Society, Boston: 1–26.
  10. Doswell C.A., Burgess D.W. 1993. Tornadoes and tornadic storms: A review of conceptual models. [in:] C. Church, D. Burgess, C.A. Doswell, R. Davies-Jones (Eds.) The Tornado: Its Structure, Dynamics, Prediction and Hazards. Geophysical Monograph Series, 79, American Geophysical Union: 161–172.
  11. Dotzek N., Groenemeijer P., Feuerstein B., Holzer A.M. 2009. Overview of ESSL's severe convective storms research using the European Severe Weather Database ESWD. Atmospheric Research, 93: 575–586.
  12. Ebert E.E., Holland G.J. 1992. Observations of record cold cloud-top temperatures in tropical cyclone Hilda (1990). Monthly Weather Review, 120, 10: 2240–2251.
  13. Farnell C., Rigo T., Pineda N. 2016. Lightning jump as a nowcast predictor: Application to severe weather events in Catalonia. Atmospheric Research, 183: 130–141.
  14. Foote G.B. 1984. A study of hail growth utilizing observed storm conditions. Journal of Applied Meteorology and Climatology, 23: 84–101.
  15. Fujita T. 1973. Proposed mechanism of tornado formation from rotating thunderstorms. Proceedings 8th Conference on Severe Local Storms, 15–17 Oct. 1973, Boston, US.
  16. Grenier J.C., Admirat P., Zair S. 1983. Hailstone growth trajectories in the dynamic evolution of a moderate hailstorm. Journal of Applied Meteorology and Climatology, 22: 1008–1021.
  17. Groenemeijer P.H., Van Delden A. 2007. Sounding-derived parameters associated with large hail and tornadoes in the Netherlands. Atmospheric Research, 83: 473–487.
  18. Hartmann D.L., Klein Tank A.M.G., Rusticucci M., Alexander L.V., Brönnimann S., Charabi Y., Dentener F.J., Dlugokencky E.J., Easterling D.R., Kaplan A., Soden B.J., Thorne P.W., Wild M., Zhai P.M 2013. Observations: Atmosphere and Surface. [in:] T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.
  19. Jurczyk A., Szturc J., Otop I., Ośródka K., Struzik P. 2020. Quality-Based Combination of Multi-Source Precipitation Data. Remote Sensing, 12(11), 1709.
  20. Knight C.A., Knight N.C. 2001. Hailstorms. [in:] Doswell, C.A. (Eds.), Severe Convective Storms. American Meteorological Society, Boston: 223–254.
  21. Kumjian M.R., Ryzhkov A.V. 2008. Polarimetric Signatures in Supercell Thunderstorms. Journal of Applied Meteorology and Climatology, 47: 1940–1961.
  22. Kunz M., Kugel P.I.S. 2015. Detection of hail signatures from single-polarization C-band radar reflectivity. Atmospheric Research, 153: 565–577.
  23. Lemon L.R. 1980. Severe thunderstorms radar identification techniques and warning criteria: A preliminary report. NOAA Tech. Memo.
  24. Lemon L.R. 1998. The Radar ‘‘Three-Body Scatter Spike’’: An Operational Large-Hail Signature. Weather and Forecasting, 13: 327–340.
  25. Lopez L., Sanchez J.L. 2009. Discriminant methods for radar detection of hail. Atmospheric Research, 93: 358–368.
  26. Lukach M., Foresti L., Giot O., Delobbe L. 2017. Estimating the occurrence and severity of hail based on 10 years of observations from weather radar in Belgium. Meteorological Applications, 24: 250–259.
  27. Markowski P.M. 2002. Hook echoes and Rear-Flank Downdrafts: A Review. Monthly Weather Review, 130: 852–876.
  28. Marra A.C., Porcu F., Baldini L., Petracca M., Casella D., Dietrich S., Mugnai A., Sano P., Vulpiani G., Panegrossi G. 2017. Observational analysis of an exceptionally intense hailstorm over the Mediterranean area: Role of GPM Core observatory. Atmospheric Research, 192: 72–90.10.1016/j.atmosres.2017.03.019
  29. MikusJurkovic P., StrelecMahovic N., Pocakal D. 2015. Lightning, overshooting top and hail characteristics for strong convective storms in Central Europe. Atmospheric Research: 161–162, 153–168.
  30. Moller A.R. 2001. Severe Local Storms Forecasting. [in:] C.A. Doswell (Eds.) Severe Convective Storms. American Meteorological Society, Boston: 433–480.
  31. Nelson S.P., 1983. The influence of storm flow structure on hail growth. Journal of the Atmospheric Sciences, 40: 1965–1983.10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2
  32. Nisi L., Martius O., Hering A., Kunz M., Gremann U. 2016. Spatial and temporal distribution of hailstorms in the Alpine region: a long-term, high resolution, radar-based analysis. Quarterly Journal of the Royal Meteorological Society, 142, 697: 1590–1604.
  33. Pilorz W. 2014. Radarowa detekcja superkomórek burzowych w Polsce. Teledetekcja Środowiska, 51: 93–105.
  34. Pilorz W., Laskowski I., Łupikasza E. Taszarek M. 2016. Wind Shear and the Strength of Severe Convective Phenomena— Preliminary Results from Poland in 2011–2015. Climate, 4, 51.
  35. Punge H.J., Bedka K.M., Kunz M., Reinbold A. 2017. Hail frequency estimation across Europe based on a combination of overshooting top detections and the ERA – INTERIM reanalysis. Atmospheric Research, 198: 34–43.
  36. Punge H.J., Kunz M. 2016. Hail observations and hailstorm characteristics in Europe: A review. Atmospheric Research: 176–177, 159–184.
  37. Rasmussen E.N., Blanchard D.O. 1998. A Baseline Climatology of Sounding-Derived Supercell and Tornado Forecast Parameters. Weather and Forecasting, 13: 1148–1164.
  38. Schuster S.S., Blong R.J., McAneney K.J. 2006. Relationship between radar derived hail kinetic energy and damage to insured buildings for severe hailstorms in Eastern Australia, Atmospheric Research, 81: 215–235.
  39. Setvak M., Lindsey D.T., Novak P., Wang P.K., Radova M., Kerkmann J., Grasso L., Su S.-H., Rabin R.M., Staska J., Charvat Z. 2010. Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmospheric Research, 97: 80–96.
  40. Skripniková K., Řezáčová D. 2014. Radar-based hail detection. Atmospheric Research, 144: 175–185.
  41. Stefan S., Barbu N. 2018. Radar-derived parameters in hail-producing storms and the estimation of hail occurrence in Romania using a logistic regression approach. Meteorological Applications, 25: 614–621.
  42. Stout G.E., Huff F.A. 1953. Radar records Illinois tornado genesis. Bulletin of the American Meteorological Society, 34, 281–284.
  43. Stržinar G., Skok G. 2018. Comparison and optimization of radar-based hail detection algorithms in Slovenia. Atmospheric Research, 203: 275–285.
  44. Taszarek M., Brooks H.E., Czernecki B. 2017. Sounding-Derived Parameters Associated with Convective Hazards in Europe. Monthly Weather Review, 145: 1511–1528.
  45. Taszarek M., Czernecki B., Kozioł A. 2015. A Cloud-to-Ground Lightning Climatology for Poland. Monthly Weather Review, 143: 4285–4304.
  46. Trefalt S., Martynov A., Barras H., Besic N., Hering A.M., Lenggenhager S., Notie P., Röthlisberger M., Schemm S., Germann U., Martius O. 2018. A severe hail storm in complex topography in Switzerland – Observations and processes. Atmospheric Research, 209: 76–94.
  47. Tuszyńska I. 2011. Charakterystyka produktów radarowych. Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy, Warszawa.
  48. Twardosz R., Niedźwiedź T., Łupikasza E. 2010. Hail thunderstorms in Kraków and their circulation determinants (1863–2008). [in:] T. Ciupa, R. Suligowski (Eds.) Woda w badaniach geograficznych. Instytut Geografii Uniwersytet Jana Kochanowskiego, Kielce: 295–305.
  49. Villarini G., Krajewski W.F. 2010. Review of Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall. Survey in Geophysics, 31: 107–127.
  50. Waldvogel A., Federer B., Grimm P. 1979. Criteria for the Detection of Hail Cells, Journal of Applied Meteorology and Climatology, 18: 1521–1525.
  51. Wapler K. 2017. The life-cycle of hailstorms: Lightning, radar reflectivity and rotation characteristics. Atmospheric Research, 193: 60–72.
  52. Wilson J.W., Reum D. 1986. „The hail spike”: a reflectivity and velocity signature. Proceedings 23rd Conference on Radar Meteorology, 22–26 Sep. 1986, American Meteorological Society, Snowmass, US.
  53. Wilson J.W., Reum D. 1988. The flare echo: Reflectivity and velocity signature. Journal of Atmospheric and Oceanic Technology, 5: 197–205.
  54. Witt A. 1996. The relationship between low-elevation WSR-88D reflectivity and hail at the ground using precipitation observations from the VORTEX project. Proceedings 18th Conference on Severe Local Storms, 19–23 Feb. 1996, San Francisco, US: 183–185.
  55. Witt A. 1998. An Enhanced Hail Detection Algorithm for the WSR-88D. Weather and Forecasting, 13: 286–303.
  56. Zrnić D.S. 1987. Three-body scattering produces precipitation signature of special diagnostics signature. Radio Science, 22: 76–86.
  57. Zrnić D.S., Ryzhkov A.V. 1999. Polarimetry for Weather Surveillance Radars. Bulletin of the American Meteorological Society, 80: 389–406.
Language: English
Page range: 34 - 47
Submitted on: Jun 20, 2020
Accepted on: Aug 24, 2020
Published on: Sep 8, 2020
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Wojciech Pilorz, Ewa Łupikasza, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.