Have a personal or library account? Click to login
An overview of the experimental research use of lysimeters Cover

An overview of the experimental research use of lysimeters

Open Access
|Jun 2019

References

  1. Augenstein M., Goeppert N., Goldscheider N. 2015. Characterizing soil water dynamics on steep hillslopes from long-term lysimeter data. Journal of Hydrology, 529: 795–804.10.1016/j.jhydrol.2015.08.053
  2. Barkle G., Wöhlingb Th., Stengerb R., Mertensc J., Moorhead B., Wallb A., Clagueb J. 2011. Automated Equilibrium Tension Lysimeters for Measuring Water Fluxes through a Layered, Volcanic Vadose Profile in New Zealand. Vadose Zone Journal, 10, 2: 747–759.10.2136/vzj2010.0091
  3. Borowiak D. 2016. Historia Stacji Limnologicznej w Borucinie. [in:] J. Wendt (ed.) 70 lat gdańskiego ośrodka geograficznego: teraźniejszość i przeszłość. Wydawnictwo Libron, Kraków: 313–329.
  4. Brown C.D., Hollis J.M., Bettinson R.J., Walker A. 2000. Leaching of pesticides and a bromide tracer through lysimeters from five contrasting soils. Pest Management Science, 56, 1: 83–93.10.1002/(SICI)1526-4998(200001)56:1<;83::AID-PS98>3.0.CO;2-8
  5. Cepuder P., Supersberg H. 1991. Erfahrungen mit der Lysimeteranlage Groß-Enzersdorf. Bundesanstalt für alpenländische Landwirtschaft, BAL – Bericht.
  6. Chmielewski W., Dmuchowski W., Molski B. 1985. Trees in the city as sinks for air pollution - field study with the used of portable lysimeters conducted in Warsaw. [in:] I. Supuka (ed.) Creation and Protection of Verdure in the Urbanized Landscape. VEDA, Bratislava: 103–108.
  7. Dabrowska D., Kucharski R., Witkowski A. 2016. The representativity index of a simple monitoring network with regular theoretical shapes and its practical application for the existing groundwater monitoring network of the Tychy-Urbanowice landfills, Poland. Environmental Earth Sciences, 75: 749.10.1007/s12665-016-5554-0
  8. Dabrowska D., Sołtysiak M., Cnota Ł. 2018a. Lysimeter experiments on municipal landfill waste – overview of current global research. 18th International Multidisciplinary Scientific GeoConference SGEM 2018, Albena: 495–500.10.5593/sgem2018/5.1/S20.064
  9. Dabrowska D., Witkowski A., Sołtysiak M. 2018b. Application of pollution indices for the assessment of the negative impact of a municipal landfill on groundwater (Tychy, southern Poland). Geological Quarterly, 62, 3: 496–508.10.7306/gq.1420
  10. Dabrowska, D., Witkowski, A., Sołtysiak M. 2018c. Representativeness of the groundwater monitoring results in the context of its methodology. Environmental Earth Sciences, 77: 266.10.1007/s12665-018-7455-x
  11. DVWK/Deutscher Verband für Wasserwirtschaft und Kulturbau e. V. (ed.). 1980. Empfehlungen zum Bau und Betrieb von Lysimetern. DVWK-Regeln zur Wasserwirtschaft, 114: 52.
  12. Elbl J., Plosek L., Kintl A., Prichystalova J., Zahora J., Friedel J. 2014. The Effect of Increased Doses of Compost on Leaching of Mineral Nitrogenmfrom Arable Land. Polish Journal of Environmental Studies, 23, 3: 697–703.
  13. Hoffmann M., Schwartengraber R., Wessolek G., Peters A. 2016. Comparison of simple rain gauge measurements with precision lysimeter data. Atmospheric Research, 174–175: 120–123.10.1016/j.atmosres.2016.01.016
  14. Howell T.A., Schneider A.D., Jensen M.E. 1991. History of Lysimeter Design and Use for Evapotranspiration Measurements. in: Lysimeters for Evapotranspiration and Environmental Measurements. Proceeding of International Symposium on Lysimetry. Honolulu, Hawaii, United States. American Society of Civil Engineers: 1–9
  15. Jancsó M., Szaloki T., Székely A., Szira F., Monostori I., Vágújfalvi A., Hoffmann B., Megyery Sz., Oncsik M.B. 2017. Characterization of 4 winter wheat cultivars with different Nitrogen Use Efficiency (NUE): Lysimeter study. 17. Gumpensteiner Lysimetertagung. Höhere Bundeslehrund Forschungsanstalt für Landwirtschaft, Raumberg-Gumpenstein: 103–106.
  16. Kalembkiewicz J., Sitarz-Palczak E. 2015. Efficiency of leaching tests in the context of the influence of the fly ash on the environment. Journal of Ecological Engineering, 16: 67–80.10.12911/22998993/589
  17. Kim, A. 2002. Ccb leaching summary: survey of methods and results. Proceedings: Coal combustion by-products and western coal mines: A technical interactive forums: 179–195.
  18. Lanthaler Ch. 2004. Lysimeter Stations and Soil Hydrology Measuring Sites in Europe – Purpose, Equipment, Research Results, Future Developments. A diploma thesis, The Faculty of Natural Sciences at the Karl-Franzens-University Graz, not published.
  19. Larsbo M., Jarvis N. 2006. Information content of measurements from tracer microlysimeter experiments designed for parameter identification in dual-permeability models. Journal of Hydrology, 325, 1–4: 273–287.10.1016/j.jhydrol.2005.10.020
  20. Maciejewski S., Maloszewski P., Stumpp C., Klotz D. 2006. Modelling of water flow through typical Bavarian soils (Germany) based on lysimeter experiments: 1. Estimation of hydraulic characteristics of the unsaturated zone. Hydrological Sciences Journal, 51, 2: 285–297.10.1623/hysj.51.2.285
  21. Macioszczyk T. 2002. Lysimeter [in:] J. Dowgiałło, A.S. Kleczkowski, T. Macioszczyk, A. Różkowski (eds.) Słownik hydrogeologiczny. Państwowy Instytut Geologiczny, Warszawa.
  22. Malek S., Martinson L., Sverdrup H. 2005. Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the “SAFE” model. Environmental Pollution, 137: 568–573.10.1016/j.envpol.2005.01.041
  23. Maloszewski P., Maciejewski S., Stumpp C., Stichler W., Trimborn T., Klotz D. 2006. Modelling of water flow through typical Bavarian soils based on lysimeter experiments: 2 environmental deuterium transport. Hydrology Sciences Journal, 51: 298–313.10.1623/hysj.51.2.298
  24. Malterre F., Grebil G., Pierre J., Schiavon M. Trifluralin behaviour in soil: a microlysimeter study. Chemosphere, 34, 3: 447–454.10.1016/S0045-6535(96)00387-6
  25. Martins I., Faria R., Fabiano P., Dalri A., Oliverio C., Libardi L. 2017. Weighing lysimeters for greenhouse evapotraspiration measurements. IRRIGA, 22, 4: 715–722.10.15809/irriga.2017v22n4p715-722
  26. Meissner R., Prasad M., Laing G., Rinklebe J. 2010. Lysimeter application for measuring the water and solute fluxes with high precision. Current Science, 99, 5: 601–607.
  27. Meissner R., Rupp H., Schubert M. 2000. Novel lysimeter techniques — a basis for the improved investigation of water, gas, and solute transport in soils. Journal of Plant Nutrition and Soil Science, 163, 6: 603–608.10.1002/1522-2624(200012)163:6<;603::AID-JPLN603>3.0.CO;2-K
  28. Muller J.C. 1996. Un point sur… trente ans de lysimétrie en France (1960–1990). Une technique, un outil pour l’étude de l’énvironnement. INRA, Comifer, Paris.
  29. Nourani V., Andalib G., Dąbrowska D. 2017a. Conjunction of wavelet transform and SOM-mutual information data pre-processing approach for AI-based Multi-Station nitrate modeling of watersheds. Journal of Hydrology, 548: 170–183.10.1016/j.jhydrol.2017.03.002
  30. Nourani V., Mousavi S., Dabrowska D., Sadikoglu F. 2017b. Conjunction of radial basis function interpolator and artificial intelligence models for time-space modeling of contaminant transport in porous media. Journal of Hydrology, 548: 569–587.10.1016/j.jhydrol.2017.03.036
  31. OECD, 2000. Guidance Document for the Performance of Outdoor Monolith Lysimeter Studies. OECD Series on Testing and Assessment, 22: 26.
  32. Pazdro Z., Kozerski B. 1990. Hydrogeologia ogólna. Wydawnictwa Geologiczne, Warszawa.
  33. Plošek L., Elbl J., Lošák T., Kužel T., Kintl A., Juřička D., Kynický J., Martensson A., Brtnický M. 2017. Leaching of mineral nitrogen in the soil influenced by addition of compost and N-mineral fertilizer. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 67, 7: 607–614.10.1080/09064710.2017.1322632
  34. Polap D. 2018. Human-machine interaction in intelligent technologies using the augmented reality. Information Technology and Control, 47, 4: 691–703.10.5755/j01.itc.47.4.21602
  35. Polap D., Winnicka A., Serwata K., Kesik K., Wozniak M. 2018. An Intelligent System for Monitoring Skin Diseases. Sensors, 18, 8: 2552.10.3390/s18082552
  36. Reth S. 2016. Lysimeters – a Modern Tool to Investigate Transport Processes in Ecosystems. NAS International Workshop on Applying the Lysimeter Systems to Water and Nutrient Dynamics. At National Institute of Agricultural Sciences, Wanju, South Korea.
  37. Rey E., Weingartner R., Liniger H. 2014. Case study of a hillside lysimeter with realistic boundary conditions on slope and hillside in an inner alpine area, Switzerland. Geophysical Research Abstracts, 16, EGU2014-5065.
  38. Ruiz-Penalver L., Vera-Repullo J., Jimenez-Buendia M., Guzman I., Molina-Martinez J. 2015. Development of an innovative low cost weighing lysimeter for pottedplants: Application in lysimetric stations. Agricultural Water Management, 151: 103–113.10.1016/j.agwat.2014.09.020
  39. Sarga-Gaczynska M. 2007. Dynamika generowania ładunków zanieczyszczeń na składowiskach odpadów górniczych i jej wpływ na środowisko wodne. Stanislaw Staszic Academy of Mining and Metallurgy, Phd thesis, not published.
  40. Schoen R., Gaudet J.P., Bariac T. 1999. Preferential flow and solute transport in a large lysimeter, undercontrolled boundary conditions. Journal of Hydrology, 215: 70–81.10.1016/S0022-1694(98)00262-5
  41. Schwaerzel K., Bohl H. 2003. An easily installable groundwater lysimeter to determine water balance components and hydraulic properties of peat soils. Hydrology and Earth System Sciences, 7, 1: 23–32.10.5194/hess-7-23-2003
  42. Slezak R., Krzystek L., Ledakowicz S. 2015. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions. Waste Management, 43: 293–299.10.1016/j.wasman.2015.06.017
  43. Słupik J. 1973. Zróżnicowanie spływu powierzchniowego na fliszowych stokach górskich. Dokumentacja Geograficzna, 2, IG PAN, Warszawa.
  44. Sołtysiak M., Blachnik M., Dąbrowska D. 2016. Machine-learning methods in the water reservoirs classification. Environmental & Socio-economic Studies, 4, 2: 34–42.10.1515/environ-2016-0010
  45. Sołtysiak M., Dąbrowska D. 2016. The smoothing methods used in assessing the influence of pollution sources on groundwater quality – a case study of metallurgical landfill in Lipówka (southern Poland). Environmental & Socio-economic Studies, 4, 4: 61–67.10.1515/environ-2016-0025
  46. Soltysiak M., Dąbrowska D., Jałowiecki K., Nourani V., 2018. A multi-method approach to groundwater risk assessment: A case study of a landfill in southern Poland. Geological Quarterly, 62, 2: 361–374.10.7306/gq.1411
  47. Soltysiak M., Dąbrowska D., Żarski T., Żyła Ł., 2017. Lysimeter research of steel work slags from the Katowice Steelwork (Southern Poland). SGEM 2017, Albena, 1: 513–520.10.5593/sgem2017/12/S02.066
  48. Stasko S., Chodacki M. 2014. Infiltracja do wód podziemnych na podstawie pomiarów lizymetrycznych w Górach Sowich. Przegląd Geologiczny, 62, 8: 414–419.
  49. Stumpp C., Maloszewski P., Stichler W., Maciejewski S. 2007. Quantification of the heterogeneity of the unsaturated zone based on environmental deuterium observed in lysimeter experiments. Hydrological Sciences Journal, 52, 4: 748–762.10.1623/hysj.52.4.748
  50. Stumpp C., Maloszewski P., Stichler W., Fank J. 2009. Environmental isotope (δ18O) and hydrological data to assess water flow in unsaturated soils planted with different crops: Case study lysimeter station “Wagna” (Austria). Journal of Hydrology, 369, 1–2: 198–208.10.1016/j.jhydrol.2009.02.047
  51. Stumpp C., Stichler W., Kandolf M., Šimůnek J. 2012. Effects of land cover and fertilization method on water flow and solute transport in five lysimeters: A long-term study using stable water isotopes. Vadose Zone Journal, 11, 1: 14.10.2136/vzj2011.0075
  52. Stumpp C., Malosewski P. 2010. Quantification of preferential flow and flow heterogeneities in an unsaturated soil planted with different crops using the environmental isotope δ18O. Journal of Hydrology, 394: 407–415.10.1016/j.jhydrol.2010.09.014
  53. Stumpp C., Stichler W., Maloszewski P. 2009. Application of the environmental isotope δ18O to study water flow in unsaturated soils planted with different crops: Case study of a weighable lysimeter from the research field in Neuherberg, Germany. Journal of Hydrology, 368: 68–78.10.1016/j.jhydrol.2009.01.027
  54. Sykut S. 1988. Dynamika procesu wymywania z gleb składników mineralnych w doświadczeniu lizymetrycznym (Phd thesis). IUNG Puławy, 59.
  55. Szczepanska J. 1987. Coal mine spoil tips as a source of the natural water environment pollution, Scientific Bulletins of Stanislaw Staszic Academy of Mining and Metallurgy, 1135.10.1016/B978-0-444-42876-9.50026-9
  56. Tarka R. 1997. Zasilanie wód podziemnych w górskich masywach krystalicznych na przykładzie Masywu Śnieżnika w Sudetach. Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław.
  57. Ucles O., Villagarcia L., Canton Y., Domingo F. 2013. Microlysimeter station for long term non-rainfall water input and evaporation studies. Agricultural and Forest Meteorology, 182–183: 13–20.10.1016/j.agrformet.2013.07.017
  58. Valtenana M., Nsillanpaab N., Setalaaa H. 2017. A large-scale lysimeter study of stormwater biofiltration under coldclimatic condition. Ecological Engineering, 100: 89–98.10.1016/j.ecoleng.2016.12.018
  59. Witczak S., Postawa A. 1993a. Ocena szybkości ługowania siarczków z płonych skał karbońskich deponowanych na składowiskach Górnośląskiego Zagłębia Węglowego na podstawie badań lizymetrycznych. Polska Akademia Nauk, Prace Mineralogiczne, 84.
  60. Witczak S., Postawa A. 1993b. The cinetics of sulphides oxidation in the coal mine spoils of the Upper Silesian Coal Basin. Pilot scale test. The 4th International Symposium on the Reclamation, Treatment and Utilization of Coal Mine Waste, Kraków.
  61. Zurek A. 2010. Wstępna ocena składowych naturalnego bilansu wodnego na podstawie obserwacji w lizymetrach. Przegląd Geologiczny, 58, 12: 1192–1197.
  62. Zurek A., Czop M. 2010. Modelowanie warunków przepływu i przekształceń składu chemicznego wód opadowych w trakcie procesu infiltracji, na przykładzie doświadczenia lizymetrycznego. Biuletyn Państwowego Instytutu Geologicznego, 442: 181–188.
  63. Zurek A., Moscicki W. 2017. Badanie strefy aeracji na stanowisku lizymetrycznym przy pomocy penetracyjnego profilowania oporności elektrycznej. Prace Geograficzne, 151: 121–132.10.4467/20833113PG.17.025.8037
  64. http://lysimeter.info/
  65. http://lysimeter.at/
Language: English
Page range: 49 - 56
Submitted on: Jan 25, 2019
Accepted on: May 6, 2019
Published on: Jun 6, 2019
Published by: University of Silesia in Katowice, Faculty of Natural Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Marek Sołtysiak, Michał Rakoczy, published by University of Silesia in Katowice, Faculty of Natural Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.