Have a personal or library account? Click to login
Quercetin improves myocardial redox status in rats with type 2 diabetes Cover

Quercetin improves myocardial redox status in rats with type 2 diabetes

Open Access
|Sep 2021

References

  1. Amado LC, Saliaris AP, Raju SVY, Lehrke S, St John M, Xie J, Stewart G, Fitton T, Minhas KM, Brawn J, Hare JM. Xanthine oxidase inhibition ameliorates cardiovascular dysfunction in dogs with pacing-induced heart failure. J Mol Cell Cardiol 39, 531–536, 2005.10.1016/j.yjmcc.2005.04.008
  2. Antunes F, Han D, Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H(2)O(2) detoxification in in vivo conditions. Free Radic Biol Med 33, 1260–1267, 2002.10.1016/S0891-5849(02)01016-X
  3. Bai T, Wang F, Zheng Y, Liang Q, Wang Y, Kong J, Cai L. Myocardial redox status, mitophagy and cardioprotection: a potential way to amend diabetic heart? Clin Sci (Lond), 130, 1511–1521, 2016.10.1042/CS2016016827433024
  4. Bernatoniene J, Kopustinskiene DM, Jakstas V, Majiene V, Baniene R, Kursvietiene L, Masteikova R, Savickas A, Toleikis A, Trumbeckaite S. The effect of Leonurus cardiaca herb extract and some of its flavonoids on mitochondrial oxidative phosphorylation in the heart. Planta Med 80, 525–532, 2014.10.1055/s-0034-136842624841965
  5. Bowe JE, Franklin ZJ, Hauge-Evans AC, King AJ, Persaud SJ, Jones PM. Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J Endocrinol 222, G13–G25, 2014.10.1530/JOE-14-018225056117
  6. Brown DI, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 116, 531–549, 2015.10.1161/CIRCRESAHA.116.303584439238825634975
  7. Cao H, Pauff JM, Hille R. X-ray crystal structure of a xanthine oxidase complex with the flavonoid inhibitor quercetin. J Nat Prod 77, 1693–1699, 2014.10.1021/np500320g25060641
  8. Cave A, Grieve D, Johar S, Zhang M, Shah AM. NADPH oxidase-derived reactive oxygen species in cardiac patho-physiology. Philos Trans R Soc Lond B Biol Sci 360, 2327–2334, 2005.10.1098/rstb.2005.1772156959916321803
  9. Conti G, Caccamo D, Siligato R, Gembillo G, Satta E, Pazzano D, Carucci N, Carella A, Del Campo G, Salvo A, Santoro D. Association of higher advanced oxidation protein products (AOPPs) levels in patients with diabetic and hypertensive nephropathy. Medicina (Kaunas) 55, 675, 2019.10.3390/medicina55100675684392031591338
  10. Daubney J, Bonner PL, Hargreaves AJ, Dickenson JM. Cardioprotective and cardiotoxic effects of quercetin and two of its in vivo metabolites on differentiated h9c2 cardiomyocytes. Basic Clin Pharmacol Toxicol 116, 96–109, 2015.10.1111/bcpt.1231925203460
  11. Di Lisa F, Menabo R, Barbato R, Siliprandi N. Contrasting effects of propionate and propionyl-L-carnitine on energy-linked processes in ischemic hearts. Am J Physiol 267, 455–461, 1994.10.1152/ajpheart.1994.267.2.H4558067396
  12. D’Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, Laviola L, Giorgino F. The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxid Med Cell Longev 2020, 5732956, 2020.10.1155/2020/5732956724497732509147
  13. Dudylina AL, Ivanova MV, Shumaev KB, Ruuge EK. Superoxide formation in cardiac mitochondria and effect of phenolic antioxidants. Cell Biochem Biophys 77, 99–107, 2019.10.1007/s12013-018-0857-230218405
  14. Eid HM, Haddad PS. The antidiabetic potential of quercetin: underlying mechanisms. Curr Med Chem 24, 355–364, 2017.10.2174/092986732366616090915370727633685
  15. Gauer JS, Tumova S, Lippiat JD, Kerimi A, Williamson G. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Biochem Pharmacol 152, 11–20, 2018.10.1016/j.bcp.2018.03.01129548810
  16. Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: a mechanistic review. Biomed Pharmacother 111, 947–957, 2019.10.1016/j.biopha.2018.12.12730841474
  17. Gorbenko NI, Borikov OY, Ivanova OV, Taran KV, Litvinova TS, Kiprych TV, Shalamai AS. The effect of quercetin on oxidative stress markers and mitochondrial permeability transition in the heart of rats with type 2 diabetes. Ukr Biochem J 91, 46–54, 2019.10.15407/ubj91.05.046
  18. Gradinaru D, Borsa C, Ionescu C, Margina D. Advanced oxidative and glycoxidative protein damage markers in the elderly with type 2 diabetes. J Proteomics 92, 313–322, 2013.10.1016/j.jprot.2013.03.03423587667
  19. Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 142, 375–415, 2014.10.1016/j.pharmthera.2014.01.00324462787
  20. Huynh K, Kiriazis H, Du XJ, Love JE, Gray SP, Jandeleit-Dahm KA, McMullen JR, Ritchie RH. Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radic Biol Med 60, 307–317, 2013.10.1016/j.freeradbiomed.2013.02.02123454064
  21. International Diabetes Federation. IDF Diabetes Atlas, 9th edn. Brussels, Belgium: 2019. Available at: https://www.diabetesatlas.org.
  22. Jimenez R, Lopez-Sepulveda R, Romero M, Toral M, Cogolludo A, Perez-Vizcaino F, Duarte J. Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats. Food Funct 6, 409–414, 2015.10.1039/C4FO00818A
  23. Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS. Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci 16, 25234–25263, 2015.10.3390/ijms161025234
  24. Kicinska A, Jarmuszkiewicz W. Flavonoids and mitochondria: activation of cytoprotective pathways? Molecules 25, 3060, 2020.10.3390/molecules25133060
  25. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013, 162750, 2013.10.1155/2013/162750
  26. Lagoa R, Graziani I, Lopez-Sanchez C, Garcia-Martinez V, Gutierrez-Merino C. Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim Biophys Acta 1807, 1562–1572, 2011.10.1016/j.bbabio.2011.09.022
  27. Lee MC, Velayutham M, Komatsu T, Hille R, Zweier JL. Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox-regulated pathway of radical generation in ischemic tissues. Biochemistry 53, 6615–6623, 2014.10.1021/bi500582r
  28. Li JM, Gall NP, Grieve DJ, Chen M, Shah AM. Activation of NADPH oxidase during progression of cardiac hyper-trophy to failure. Hypertension 40, 477–484, 200210.1161/01.HYP.0000032031.30374.32
  29. Lin S, Yang J, Wu G, Liu M, Luan X, Lv Q, Zhao H, Hu J. Preventive effect of taurine on experimental type II diabetic nephropathy. J Biomed Sci 17 (Suppl 1), S46, 2010.10.1186/1423-0127-17-S1-S46
  30. Liu Q, Wang S, Cai L. Diabetic cardiomyopathy and its mechanisms: role of oxidative stress and damage. J Diabetes Invest 5, 623–634, 2014.10.1111/jdi.12250
  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265–275, 1951.10.1016/S0021-9258(19)52451-6
  32. Lutz M, Fuentes E, Avila F, Alarcon M, Palomo I. Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules 24, 366, 2019.10.3390/molecules24020366635932130669612
  33. Miller GL. Protein determination for large number of samples. Anal Chem 31, 964, 1959.10.1021/ac60149a611
  34. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284, 13291–13295, 2009.10.1074/jbc.R900010200267942719182219
  35. Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med 51, 1–13, 2019.10.1038/s12276-019-0355-7692335531857574
  36. Pereira DF, Cazarolli LH, Lavado C, Mengatto V, Figueiredo MS, Guedes A, Pizzolatti MG, Silva FR. Effects of flavonoids on α-glucosidase activity: potential targets for glucose homeostasis. Nutrition 27, 1161–1167, 2011.10.1016/j.nut.2011.01.00821684120
  37. Raza H, John A. Glutathione metabolism and oxidative stress in neonatal rat tissues from streptozotocin-induced diabetic mothers. Diabetes Metab Res Rev 20, 72–78, 2004.10.1002/dmrr.42214737748
  38. Redondo A, Estrella N, Lorenzo AG, Cruzado M, Castro C. Quercetin and catechin synergistically inhibit angiotensin II-induced redox-dependent signalling pathways in vascular smooth muscle cells from hypertensive rats. Free Radic Res 46, 619–627, 2012.10.3109/10715762.2012.66052722295890
  39. Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease. Circ Res 126, 1501–1525, 2020.10.1161/CIRCRESAHA.120.315913725197432437308
  40. Ritchie RH, Quinn JM, Cao AH, Drummond GR, Kaye DM, Favaloro JM, Proietto J, Delbridge LMD. The antioxidant tempol inhibits cardiac hypertrophy in the insulin-resistant GLUT4-deficient mouse in vivo. J Mol Cell Cardiol 42, 1119–1128, 2007.10.1016/j.yjmcc.2007.03.90017490678
  41. Sagor AT, Tabassum N, Potol A, Alam A. Xanthine oxidase inhibitor, allopurinol, prevented oxidative stress, fibrosis, and myocardial damage in isoproterenol induced aged rats. Oxid Med Cell Longev 2015, 478039, 2015.10.1155/2015/478039447555026137187
  42. Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega 5, 11849–11872, 2020.10.1021/acsomega.0c01818725478332478277
  43. Shah MS, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res 118, 1808–1829, 2016.10.1161/CIRCRESAHA.116.306923488890127230643
  44. Shi GJ, Li Y, Cao QH, Wu HX, Tang XY, Gao XH, Yu JQ, Chen Z, Yang Y. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: a systematic review of the literature. Biomed Pharmacother 109, 1085–1099, 2019.10.1016/j.biopha.2018.10.13030551359
  45. Skovso S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig 5, 349–358, 2014.10.1111/jdi.12235421007725411593
  46. Takahama U, Koga Y, Hirota S, Yamauchi R. Inhibition of xanthine oxidase activity by an oxathiolanone derivative of quercetin. Food Chem 126, 1808–1811, 2011.10.1016/j.foodchem.2010.12.00925213960
  47. Taylor EL, Armstrong KR, Perrett D, Hattersley AT, Winyard PG. Optimization of an advanced oxidation protein products assay: its application to studies of oxidative stress in diabetes mellitus. Oxid Med Cell Longev 2015, 496271, 2015.10.1155/2015/496271446581626113954
  48. Torres-Piedra M, Ortiz-Andrade R, Villalobos-Molina R, Singh N, Medina-Franco JL, Webster SP, Binnie M, Navarrete-Vazquez G, Estrada-Soto S. A comparative study of flavonoid analogues on streptozotocine-nicotinamide induced diabetic rats: quercetin as a potential antidiabetic agent acting via 11beta–hydroxysteroid dehydrogenase type 1 inhibition. Eur J Med Chem 45, 2606–2616, 2010.10.1016/j.ejmech.2010.02.04920346546
  49. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301, H2181–2190, 2011.10.1152/ajpheart.00554.201121949114
  50. Varga ZV, Giricz Z, Liaudet L, Hasko G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852, 232–242, 2015.10.1016/j.bbadis.2014.06.030427789624997452
  51. Wang Z, Chen K, Han Y, Zhu H, Zhou X, Tan T, Zeng J, Zhang J, Liu Y, Li Y, Yao Y, Yi J, He D, Zhou J, Ma J, Zeng C. Irisin protects heart against ischemia-reperfusion injury through a SOD2-dependent mitochondria mechanism. J Cardiovasc Pharmacol 72, 259–269, 2018.10.1097/FJC.0000000000000608628369629979350
  52. Wein S, Behm N, Petersen RK, Kristiansen K, Wolffram S. Quercetin enhances adiponectin secretion by a PPAR-gamma independent mechanism. Eur J Pharm Sci 1, 16–22, 2010.10.1016/j.ejps.2010.05.00420580672
  53. Zahedi M, Ghiasvand R, Feizi A, Asgari G, Darvish L. Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: a double-blind randomized controlled clinical trial. Int J Prev Med 4, 777–785, 2013.
  54. Zhang H, Xiong Z, Wang J, Zhang S, Lei L, Yang L, Zhang Z. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway. Molec Med Rep 13, 1593–1601, 2016.10.3892/mmr.2015.4724473283626717963
  55. Zhang M, Kho AL, Anilkumar N, Chibber R, Pagano PJ, Shah AM, Cave AC. Glycated proteins stimulate reactive oxygen species production in cardiac myocytes: involvement of Nox2 (gp91phox)-containing NADPH oxidase. Circulation 113, 1235–1243, 2006.10.1161/CIRCULATIONAHA.105.58139716505175
DOI: https://doi.org/10.2478/enr-2021-0015 | Journal eISSN: 1336-0329 | Journal ISSN: 1210-0668
Language: English
Page range: 142 - 152
Published on: Sep 13, 2021
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Nataliia I. Gorbenko, Oleksii Yu. Borikov, Tetiana V. Kiprych, Olha V. Ivanova, Kateryna V. Taran, Tetiana S. Litvinova, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.