Have a personal or library account? Click to login
Plant isoflavones can affect accumulation and impact of silver and titania nanoparticles on ovarian cells Cover

Plant isoflavones can affect accumulation and impact of silver and titania nanoparticles on ovarian cells

Open Access
|Jan 2021

References

  1. Almeida IM, Rodrigues F, Sarmento B, Alves RC, Oliveira MB. Isoflavones in food supplements: chemical profile, label accordance and permeability study in Caco-2 cells. Food Funct 6, 938–946, 2015.10.1039/C4FO01144A
  2. Atlante A, Bobba A, Paventi G, Pizzuto R, Passarella S. Genistein and daidzein prevent low potassium-dependent apoptosis of cerebellar granule cells. Biochem Pharmacol 79, 758–767, 2010.10.1016/j.bcp.2009.10.00519822130
  3. Banu SK, Stanley JA, Sivakumar KK, Arosh JA, Burghardt RC. Resveratrol protects the ovary against chromium-toxicity by enhancing endogenous antioxidant enzymes and inhibiting metabolic clearance of estradiol. Toxicol Appl Pharmacol 303, 65–78, 2016.10.1016/j.taap.2016.04.016583008527129868
  4. Baranowska-Wojcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A. Effects of titanium dioxide nanoparticles exposure on human health - a review. Biol Trace Elem Res 193, 118–129, 2020.10.1007/s12011-019-01706-6691471730982201
  5. Beazley KE, Nurminskaya M. Effects of dietary quercetin on female fertility in mice: implication of transglutaminase 2. Reprod Fertil Dev 28, 974–981, 2016.10.1071/RD14155479443525557047
  6. Bodis J, Sulyok E, Koszegi T, Godony K, Premusz V, Varnagy A. Serum and follicular fluid levels of sirtuin 1, sirtuin 6, and resveratrol in women undergoing in vitro fertilization: an observational, clinical study. J Int Med Res 47, 772–782, 2019.10.1177/0300060518811228638145330556451
  7. Brohi RD, Wang L, Talpur HS, Wu D, Khan FA, Bhattarai D, Rehman ZU, Farmanullah F, Huo LJ. Toxicity of nanoparticles on the reproductive system in animal models: a review. Front Pharmacol 8, 606, 2017.10.3389/fphar.2017.00606559188328928662
  8. De Matteis V, Cascione M, Toma CC, Leporatti S. Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials (Basel) 8, 319, 2018.10.3390/nano8050319597733329748469
  9. Di Virgilio AL, Reigosa M, Arnal PM, Fernandez Lorenzo de Mele M. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. J Hazard Mater 177, 711–718, 2010.10.1016/j.jhazmat.2009.12.08920079968
  10. Feranchak AP, Kilic G, Wojtaszek PA, Qadri I, Fitz JG. Volume-sensitive tyrosine kinases regulate liver cell volume through effects on vesicular trafficking and membrane Na+ permeability. J Biol Chem 278, 44632–44638, 2003.10.1074/jbc.M30195820012939281
  11. Flores-Lopez LZ, Espinoza-Gomez H, Somanathan R. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J Appl Toxicol 39, 16–26, 2019.10.1002/jat.365429943411
  12. Gao G, Ze Y, Li B, Zhao X, Zhang T, Sheng L, Hu R, Gui S, Sang X, Sun Q, Cheng J, Cheng Z, Wang L, Tang M, Hong F. Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles. J. Hazard. Mater 243, 19–27, 2012.10.1016/j.jhazmat.2012.08.04923131501
  13. Grande F, Tucci P. Titanium dioxide nanoparticles: a risk for human health? Mini Rev Med Chem 16, 762–769, 2016.10.2174/138955751666616032111434126996620
  14. Han JW, Jeong JK, Gurunathan S, Choi YJ, Das J, Kwon DN, Cho SG, Park C, Seo HG, Park JK, Kim JH. Male-and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse. Nanotoxicology 10, 361–373, 2016.10.3109/17435390.2015.107339626470004
  15. Hill EK, Li J. Current and future prospects for nanotechnology in animal production. J Animal Sci Biotechnol 8, 26, 2017.10.1186/s40104-017-0157-5535105428316783
  16. Hong F, Wang L. Nanosized titanium dioxide-induced premature ovarian failure is associated with abnormalities in serum parameters in female mice. Int J Nanomedicine 13, 2543–2549, 2018.10.2147/IJN.S151215592735429731629
  17. Hou J, Wan XY, Wang F, Xu GF, Liu Z [Effects of titanium dioxide nanoparticles on development and maturation of rat preantral follicle in vitro]. Acad J Second Mil Med Univ 30, 869–873, 2009.10.3724/SP.J.1008.2009.00869
  18. Jahan S, Abid A, Khalid S, Afsar T, Qurat-Ul-Ain, Shaheen G, Almajwal A, Razak S. Therapeutic potentials of Quercetin in management of polycystic ovarian syndrome using Letrozole induced rat model: a histological and a biochemical study. J Ovarian Res 11, 26, 2018.10.1186/s13048-018-0400-5588360729615083
  19. Jozkowiak M, Hutchings G, Jankowski M, Kulcenty K, Mozdziak P, Kempisty B, Spaczynski RZ, Piotrowska-Kemp-isty H. The stemness of human ovarian granulosa cells and the role of resveratrol in the differentiation of MSCs-A review based on cellular and molecular knowledge. Cells 9, 1418, 2020.10.3390/cells9061418734918332517362
  20. Jungbauer A, Medjakovic S. Phytoestrogens and the metabolic syndrome. J Steroid Biochem Mol Biol 139, 277–289, 2014.10.1016/j.jsbmb.2012.12.00923318879
  21. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22, 93–97, 2004.10.1038/nbt920234661014661026
  22. Li N, Sun C, Zhou B, Xing H, Ma D, Chen G, Weng D. Low concentration of quercetin antagonizes the cytotoxic effects of anti-neoplastic drugs in ovarian cancer. PLoS One 9, e100314, 2014.10.1371/journal.pone.0100314408506624999622
  23. Liu Y, Wang YL, He SW, Chen MH, Zhang Z, Fu XP, Fu BB, Liao BQ, Lin YH, Qi ZQ, Wang HL. Protective effects of resveratrol against mancozeb induced apoptosis damage in mouse oocytes. Oncotarget 8, 6233–6245, 2017.10.18632/oncotarget.14056535162728031523
  24. Mikhailov OV, Mikhailova EO. Elemental Silver nanoparticles: biosynthesis and bio applications. Materials (Basel) 12, 3177, 2019.10.3390/ma12193177680399431569794
  25. Nawaz W, Zhou Z, Deng S, Ma X, Ma X, Li C, Shu X. Therapeutic versatility of resveratrol derivatives. Nutrients 9, 1188, 2017.10.3390/nu9111188570766029109374
  26. Ortega I, Villanueva JA, Wong DH, Cress AB, Sokalska A, Stanley SD, Duleba AJ. Resveratrol reduces steroidogenesis in rat ovarian theca-interstitial cells: the role of inhibition of Akt/PKB signaling pathway. Endocrinology 153, 4019–4029, 2012.10.1210/en.2012-1385340435422719052
  27. Ozatik FY, Ozatik O, Yigitaslan S, Kaygisiz B, Erol K. Do resveratrol and dehydroepiandrosterone increase diminished ovarian reserve? Eurasian J Med 52, 6–11, 2020.10.5152/eurasianjmed.2019.19044705123132158305
  28. Podolak I, Galanty A, Sobolewska D. Saponins as cytotoxic agents: a review. Phytochem Rev 9, 425–474, 2010.10.1007/s11101-010-9183-z292844720835386
  29. Rietjens IMCM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol 174, 1263–1280, 2017.10.1111/bph.13622542933627723080
  30. Said RS, El-Demerdash E, Nada AS, Kamal MM. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly(ADP-ribose) polymerase 1 (PARP-1). Biochem Pharmacol 103, 140–150, 2016.10.1016/j.bcp.2016.01.01926827941
  31. Said RS, Mantawy EM, El-Demerdash E. Mechanistic perspective of protective effects of resveratrol against cisplatin-induced ovarian injury in rats: emphasis on anti-inflammatory and anti-apoptotic effects. Naunyn Schmiedebergs Arch Pharmacol 392, 1225–1238, 2019.10.1007/s00210-019-01662-x31129703
  32. Santini SE, Basini G, Bussolati S, Grasselli F. The phytoestrogen quercetin impairs steroidogenesis and angiogenesis in swine granulosa cells in vitro. J Biomed Biotechnol 2009, 419891, 2009.10.1155/2009/419891269393219704917
  33. Sirotkin AV. Regulators of ovarian functions, second ed., Nova Science Publishers, Inc New York, 2014.
  34. Sirotkin AV, Harrath AH. Phytoestrogens and their effects. Eur J Pharmacol 741, 230–236, 2014.10.1016/j.ejphar.2014.07.05725160742
  35. Sirotkin AV, Alexa R, Alwasel S, Harrath AH. The phytoestrogen, diosgenin, directly stimulates ovarian cell functions in two farm animal species. Domest Anim Endocrinol 69, 35–41, 2019.10.1016/j.domaniend.2019.04.00231280024
  36. Tarko A, Stochmalova A, Hrabovszka S, Vachanova A, Harrath AH, Alwasel S, Grossman R, Sirotkin AV. Can xylene and quercetin directly affect basic ovarian cell functions? Res Vet Sci 119, 308–312, 2018.10.1016/j.rvsc.2018.07.01030086515
  37. Tarko A, Stochmalova A, Jedlickova K, Hrabovszka S, Vachanova A, Harrath AH, Alwasel S, Alrezaki A, Kotwica J, Balazi A, Sirotkin AV. Effects of benzene, quercetin, and their combination on porcine ovarian cell proliferation, apoptosis, and hormone release. Arch Anim Breed 62, 345–351, 2019.10.5194/aab-62-345-2019685286231807645
  38. van Duursen MBM. Modulation of estrogen synthesis and metabolism by phytoestrogens in vitro and the implications for women‘s health. Toxicol Res (Camb) 6, 772–794, 2017.10.1039/c7tx00184c606238230090542
  39. Volkovova K, Handy RD, Staruchova M, Tulinska J, Kebis A, Pribojova J, Ulicna O, Kucharska J, Dusinska M. Health effects of selected nanoparticles in vivo: liver function and hepatotoxicity following intravenous injection of titanium dioxide and Na-oleate-coated iron oxide nanoparticles in rodents. Nanotoxicology 9 (Suppl 1), 95–105, 2015.10.3109/17435390.2013.81528523763576
  40. Wu M, Ma L, Xue L, Ye W, Lu Z, Li X, Jin Y, Qin X, Chen D, Tang W, Chen Y, Hong Z, Zhang J, Luo A, Wang S. Resveratrol alleviates chemotherapy-induced oogonial stem cell apoptosis and ovarian aging in mice. Aging (Albany NY) 11, 1030–1044, 2019.10.18632/aging.101808638241830779707
  41. Zhang J, Chen Q, Du D, Wu T, Wen J, Wu M, Zhang Y, Yan W, Zhou S, Li Y, Jin Y, Luo A, Wang S. Can ovarian aging be delayed by pharmacological strategies? Aging (Albany NY) 11, 817–832, 2019.10.18632/aging.101784636695630674710
  42. Zhao X, Ze Y, Gao G, Sang X, Li B, Gui S, Sheng L, Sun Q, Cheng J, Cheng Z, Hu R, Wang L, Hong F. Nanosized TiO2-induced reproductive system dysfunction and its mechanism in female mice. PLoS One 8, e59378, 2013.10.1371/journal.pone.0059378361500823565150
DOI: https://doi.org/10.2478/enr-2021-0007 | Journal eISSN: 1336-0329 | Journal ISSN: 1210-0668
Language: English
Page range: 52 - 60
Published on: Jan 29, 2021
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Alexander V. Sirotkin, Richard Alexa, Aneta Stochmalova, Sona Scsukova, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.