References
- Abdelmageed ME, Shehatou GS, Abdelsalam RA, Suddek GM, Salem HA. Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. N-S Arch Pharmacol Arch 392, 243–258, 2019.10.1007/s00210-018-1583-430460386
- Adisakwattana S, Sookkongwaree K, Roengsumran S, Petsom A, Ngamrojnavanich N, Chavasiri W, Deesamer S, Yibchok-anun S. Structure-activity relationships of trans-cinnamic acid derivatives on α-glucosidase inhibition. Bioorg Med Chem Lett 14, 2893–2896, 2004.10.1016/j.bmcl.2004.03.03715125954
- Adisakwattana S, Roengsamran S, Hsu WH, Yibchok-anuna S. Mechanisms of antihyperglycemic effect of p-methoxycinnamic acid in normal and streptozotocin-induced diabetic rats. Life Sciences 78, 406–412, 2005.10.1016/j.lfs.2005.04.07316139846
- Adisakwattana S, Moonsan P, Yibchok-anun S. Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo. J Agric Food Chem 56, 7838–7844, 2008.10.1021/jf801208t18651742
- Adisakwattana S, Chantarasinlapin P, Thammarat H, Yibchok-Anun S. A series of cinnamic acid derivatives and their inhibitory activity on intestinal α-glucosidase. J Enzyme Inhib Med Chem 24, 1194–1200, 2009.10.1080/1475636090277932619772492
- Adisakwattana S. Cinnamic acid and its derivatives, mechanisms for prevention and management of diabetes and its complications. Nutrients 9, pii E163, 2017.10.3390/nu9020163533159428230764
- Agunloye OM, Oboh G. Hypercholesterolemia, angiotensin converting enzyme and ecto-enzymes of purinergic system: Ameliorative properties of caffeic and chlorogenic acid in hypercholesterolemic rats. J Food Biochem 2018, e12604, 2018.10.1111/jfbc.12604
- Amin RP, Kunaparaju N, Kumar S, Taldone T, Barletta MA, Zito SW. Structure elucidation and inhibitory effects on human platelet aggregation of chlorogenic acid from Wrightia tinctoria. J Complement Integr Med 10, 97–104, 2013.10.1515/jcim-2012-004823735478
- Arlt W, Neogi P, Gross C, Miller WL. Cinnamic acid based thiazolidinediones inhibit human P450c17 and 3β-hydroxysteroid dehydrogenase and improve insulin sensitivity independent of PPARγ agonist activity. J Mol Endocrinol 32, 425–436, 2004.10.1677/jme.0.032042515072549
- Austin RP. Polypharmacy as a risk factor in the treatment of type 2 diabetes. Diabetes Spectr 18, 13–16, 2006.10.2337/diaspect.19.1.13
- Avogaro A, Fadini GP, Gallo A, Pagnin E, de Kreutzenberg S. Endothelial dysfunction in type two diabetes mellitus. Nutr, Metabol Cardiovasc Dis 16(Suppl), S39–S45, 2006.10.1016/j.numecd.2005.10.01516530129
- Azuma K, Heilbronn LK, Albu JB, Smith SR, Ravussin E, Kelley DE. Adipose tissue distribution in relation to insulin resistance in type two diabetes. Am J Physiol Endocrinol Metab 293, E435–E442, 2007.10.1152/ajpendo.00394.2006568469717440034
- Babu PS, Prabuseenivasan S, Ignacimuthu S. Cinnamaldehyde-a potential antidiabetic agent. Phytomedicine 14, 15–22, 2007.10.1016/j.phymed.2006.11.00517140783
- Barre DE, Mizier-Barre KA, Stelmach E, Hobson J, Griscti O, Rudiuk A, Muthuthevar D. Flaxseed lignan complex administration in older human type 2 diabetes patients manages central obesity and prothrombosis-an invitation to further investigation into polypharmacy reduction. J Nutr Metab 2012, 585170, 2012.10.1155/2012/585170347146023094144
- Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology and management. JAMA 287, 2570–2581, 2002.10.1001/jama.287.19.257012020339
- Bel-Rhlid R, Thapa D, Kraehenbuehl K, Hansen CE, Fischer L. Biotransformation of caffeoyl quinic acids from green coffee extracts by Lactobacillus johnsonii NCC 533. AMB Express 3, 28, 2013.10.1186/2191-0855-3-28367978123692950
- Bhandarkar NS, Brown L, Panchal SK. Chlorogenic acid attenuates high-carbohydrate, high-fat diet-induced cardiovascular, liver, and metabolic changes in rats. Nutr Res 62, 78–88, 2019.10.1016/j.nutres.2018.11.00230803509
- Boudjeltia KZ, Legssyer I, Antwerpen PV, Kisoka RL, Babar S, Moguilevsky N, Delree P, Ducobu J, Remacle C, Vanhaeverbeek M, Brohee D. Triggering of inflammatory response by myeloperoxidase-oxidized LDL. Biochem Cell Biol 84, 805–812, 2006.10.1139/o06-06117167545
- Brown NJ, Vaughan DE. Angiotensin-converting enzyme inhibitors. Circulation 97, 1411–1420, Review, 1998.10.1161/01.CIR.97.14.1411
- Carr MC, Brunzell JD. Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of type two diabetes and familial combined hyperlipidemia in coronary artery disease risk. J Clin Endocrinol Metab 89, 2601–2607, 2004.10.1210/jc.2004-043215181030
- Caspary WF. Sucrose malabsorption in man after ingestion of α-glucosidehydrolase inhibitor. Lancet 1, 1231–1233, 1978.10.1016/S0140-6736(78)92466-2
- Caspary WF, Graf S. Inhibition of human intestinal α-glucosidehydrolases by a new complex oligosaccharide. Res Exp Med (Berlin) 175, 1–6, 1979.10.1007/BF01851228441522
- Cavelti-Weder C, Timper K, Seelig E, Keller C, Osranek M, Lassing U, Spohn G, Maurer P, Muller P, Jennings GT, Willers J, Saudan P, Donath MY, Bachmann MF. Development of an interleukin-1β vaccine in patients with type 2 diabetes. Mol Ther 24, 1003–1012, 2016.10.1038/mt.2015.227488176426686385
- Chen K, Pittman RN, Popel AS. Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective. Antiox Redox Signal 10, 1185–1198, 2008.10.1089/ars.2007.1959293254818331202
- Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 48, 937–943, 2010.10.1016/j.fct.2010.01.00320064576
- Cicero AF, Colletti A. Role of phytochemicals in the management of metabolic syndrome. Phytomed 23, 1134–1144, 2016.10.1016/j.phymed.2015.11.00926778479
- Crujeiras AB, Diaz-Lagares A, Abete I, Goyenechea E, Amil M, Martinez JA, Casanueva FF. Pre-treatment circulating leptin/ghrelin ratio as a non-invasive marker to identify patients likely to regain the lost weight after an energy restriction treatment. J Endocrinol Invest 37, 119–126, 2014.10.1007/s40618-013-0004-224497210
- Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 111, 1448–1454, 2005.10.1161/01.CIR.0000158483.13093.9D15781756
- de Melo TS, Lima PR, Carvalho KM, Fontenele TM, Solon FR, Tome AR, de Lemos TL, da Cruz Fonseca SG, Santos FA, Rao VS, de Queiroz MG. Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity. Braz J Med Biol Res 50, e56302, 2017.10.1590/1414-431x20165630526454028076453
- Del Rio D, Stalmach A, Calani L, Crozier A. Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols. Nutrients 2, 820–833, 2010.10.3390/nu2080820325770422254058
- Devaraj S, Tang R, Adams-Huet B, Harris A, Seenivasan T, de Lemos JA, Jialal I. Effect of high-dose alpha-tocopherol supplementation on biomarkers of oxidative stress and inflammation and carotid atherosclerosis in patients with coronary artery disease. Am J Clin Nutr 86, 1392–1398, 2007.10.1093/ajcn/86.5.1392
- Devi VR, Sharmila C, Subramanian S. Molecular docking studies involving the inhibitory effect of gymnemic acid, trigonelline and ferulic acid, the phytochemicals with antidiabetic properties, on glycogen synthase kinase 3 (α and β). J Appl Pharm Sci 8, 150–160, 2018.10.7324/JAPS.2018.8422
- Dunn JD. Diabetes pharmacy management, balancing safety, cost, and outcomes. Amer J Manag Care 16 (7 Suppl), S201–206, 2010.
- El-Bassossy HM, Fahmy A, Badawy D. Cinnamaldehyde protects from the hypertension associated with diabetes. Food Chem Toxicol 49, 3007–3012, 2011.10.1016/j.fct.2011.07.060
- Erkelens DW. Insulin resistance syndrome and type 2 diabetes mellitus. Am J Cardiol 88(suppl) 38J–42J, 2001.10.1016/S0002-9149(01)01883-5
- Foti M, Piatelli M, Tiziana Baratta M, Ruberto G. Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. structure−activity relationship. J Agric Food Chem 44, 497–501, 1996.10.1021/jf950378u
- Funke I, Melzig MF. Traditionally used plants in diabetes therapy - phytotherapeutics as inhibitors of α-amylase activity. Brazi J Pharmacog 16, 1–5, 2006.10.1590/S0102-695X2006000100002
- Gonthier MP, Remesy C, Scalbert A, Cheynier V, Souquet JM, Poutanen K, Aura AM. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomed Pharmacother 60, 536–540, 2006.10.1016/j.biopha.2006.07.084
- Gresele P, Guglielmini G, De Angelis M, Ciferri S, Ciofetta M, Falcinelli E, Lalli C, Ciabattoni G, Davì G, Bolli GB. Acute, short-term hyperglycemia enhances shear stress-induced platelet activation in patients with type II diabetes mellitus. J Am Coll Cardiol 41, 1013–1020, 2003.10.1016/S0735-1097(02)02972-8
- Grundy SM. Metabolic syndrome, connecting and reconciling cardiovascular and diabetes worlds. J Amer Coll Cardiol 47, 1093–1100, 2006a.10.1016/j.jacc.2005.11.04616545636
- Grundy SM. Drug therapy of the metabolic syndrome: minimizing the emerging crisis in polypharmacy. Nat Rev Drug Discov 5, 295–309, 2006b.10.1038/nrd200516582875
- Hafizur RM, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, Siddiqui RA. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomed 22, 297–300, 2015.10.1016/j.phymed.2015.01.00325765836
- Huang J, Wang S, Luo X, Xie Y, Shi X. Cinnamaldehyde reduction of platelet aggregation and thrombosis in rodents. Thromb Res 119, 337–342, 2007.10.1016/j.thromres.2006.03.00116626787
- Huang DW, Shen SC, Wu JSB. Effects of caffeic acid and cinnamic acid on glucose uptake in insulin-resistant mouse hepatocytes. J Agric Food Chem 57, 3666–3673, 2009.10.1021/jf901376x19685889
- Huang ES, Karter AJ, Danielson KK, Warton EM, Ahmed AT. The association between the number of prescription medications and incident falls in a multi-ethnic population of adult type-2 diabetes patients, the diabetes and aging study. J Gen Intern Med 25, 141–146, 2010.10.1007/s11606-009-1179-2283750119967465
- Huang B, Yuan HD, Kim DY, Quan HY, Chung SH. Cinnamaldehyde prevents adipocyte differentiation and adipo-genesis via regulation of peroxisome proliferator-activated receptor-γ (PPARγ) and AMP-activated protein kinase (AMPK) pathways. J Agric Food Chem 59, 3666–3673, 2011.10.1021/jf104814t21401097
- Hubbard GP, Wolffram S, Lovegrove JA, Gibbins JM. The role of polyphenolic compounds in the diet as inhibitors of platelet function. Proc Nutr Soc 62, 469–478, 2003.10.1079/PNS2003253
- Jung UJ, Lee MK, Park YB, Jeon SM, Choi MS. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther 318, 476–483, 2006.10.1124/jpet.106.10516316644902
- Jung EH, Kim SR, Hwang IK, Ha TY. Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J Agric Food Chem 55, 9800–9804, 2007.10.1021/jf071446317973443
- Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocrin Rev 26, 439–451, 2005.10.1210/er.2005-000515897298
- Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1, 15–25, 2005.10.1016/j.cmet.2004.12.00316054041
- Khare P, Jagtap S, Jain Y, Baboota RK, Mangal P, Boparai RK, Bhutani KK, Sharma SS, Premkumar LS, Kondepudi KK, Chopra K, Bishnoi M. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. Biofactors 42, 201–211, 2016.10.1002/biof.1265
- Kopp C, Singh SP, Regenhard P, Muller U, Sauerwein H, Mielenz M. Trans-cinnamic acid increases adiponectin and the phosphorylation of AMP-activated protein kinase through G-protein-coupled receptor signaling in 3T3-L1 adipocytes. Int J Mol Sci 15, 2906–2915, 2014.10.3390/ijms15022906
- Kostrzewa T, Przychodzen P, Gorska-Ponikowska M, Kuban-Jankowska A. Curcumin and cinnamaldehyde as PTP1B inhibitors with antidiabetic and anticancer potential. Anticancer Res 39, 745–749, 2019.10.21873/anticanres.13171
- Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 27, 1496–1504, 2004.10.2337/diacare.27.6.1496
- Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW. 5’ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48, 1667–1671, 1999.10.2337/diabetes.48.8.1667
- Lakshmi BS, Sujatha S, Anand S, Sangeetha KN, Narayanan RB, Katiyar C, Kanaujia A, Duggar R, Singh Y, Srinivas K, Bansal V, Sarin S, Tandon R, Sharma S, Singh S. Cinnamic acid, from the bark of Cinnamomum cassia, regulates glucose transport via activation of GLUT4 on L6 myotubes in a phosphatidylinositol 3-kinase-independent manner. J Diabetes 1, 99–106, 2009.10.1111/j.1753-0407.2009.00022.x
- Lee JS, Jeon SM, Park EM, Huh TL, Kwon OS, Lee MK, Choi MS. Cinnamate supplementation enhances hepatic lipid metabolism and antioxidant defense systems in high cholesterol-fed rats. J Med Food 6,183–191, 2003.10.1089/10966200360716599
- Lee S, Han JM, Kim H, Kim E, Jeong TS, Lee WS, Cho KH. Synthesis of cinnamic acid derivatives and their inhibitory effects on LDL-oxidation, acyl-CoA, cholesterol acyltransferase-1 and -2 activity and decrease of HDL-particle size. Bioorg Med Chem Lett 14, 4677–4681, 2004.10.1016/j.bmcl.2004.06.101
- Li J, Liu T, Wang L, Guo X, Xu T, Wu L, Qin L, Sun W Antihyperglycemic and antihyperlipidemic action of cinnamaldehyde in C57BLKS/J db/db mice. J Trad Chin Med 32, 446–452, 2012.10.1016/S0254-6272(13)60053-9
- Lu Y, Li Q, Liu YY, Sun K, Fan JY, Wang CS, Han JY. Inhibitory effect of caffeic acid on ADP-induced thrombus formation and platelet activation involves mitogen-activated protein kinases. Sci Rep 5, 13824, 2015.10.1038/srep13824456190226345207
- Madsen P, Westergaard N. Glucose-6-phosphatase inhibitors for the treatment of type 2 diabetes. Expert Opin Ther Pat 11, 1429–1441, 2001.10.1517/13543776.11.9.1429
- Meng S, Cao J, Feng Q, Peng J, Hu Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evid Based Complement Alternat Med 2013, 801457, 2013.10.1155/2013/801457
- Mnafgui K, Derbali A, Sayadi S, Gharsallah N, Elfeki A, Allouche N. Anti-obesity and cardioprotective effects of cinnamic acid in high fat diet-induced obese rats. J Food Sci Tech 52, 4369–4377, 2015.10.1007/s13197-014-1488-2
- Neogi P, Lakner FJ, Medicherla S, Cheng J, Dey D, Gowri M, Nag B, Sharma SD, Pickford LB, Gross C. Synthesis and structure-activity relationship studies of cinnamic acid-based novel thiazolidinedione antihyperglycemic agents. Bioorg Med Chem 11, 4059–4067, 2003.10.1016/S0968-0896(03)00393-6
- Nyambe-Silavwe H, Williamson G. Chlorogenic and phenolic acids are only very weak inhibitors of human salivary α-amylase and rat intestinal maltase activities. Food Res Int 113, 452–455, 2018.Oboh G, Agunloye OM, Adefegha SA, Akinyemi AJ, Ademiluyi AO. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. J Basic Clin Physiol Pharmacol 26, 165–170, 2015.10.1016/j.foodres.2018.07.038614343830195541
- Olthof MR, Hollman PC, Katan MB. Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131, 66–71, 2001.10.1093/jn/131.1.6611208940
- Ong KW, Hsu A, Tan BK. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PLoS One 7, e32718, 2012.10.1371/journal.pone.0032718329673322412912
- Ong KW, Hsu A, Tan BK. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem Pharmacol 85, 1341–1351, 2013.10.1016/j.bcp.2013.02.00823416115
- Pan A, Sun J, Chen Y, Ye X, Li H, Yu Z, Wang Y, Gu W, Zhang X, Chen X, Demark-Wahnefried W, Liu Y, Lin X. Effects of a flaxseed-derived lignan supplement in type 2 diabetic patients, a randomized, double-blind, cross-over trial. PLoS One 2, e1148, 2007.10.1371/journal.pone.0001148204857717987126
- Pari L, Karthikesan K, Menon VP. Comparative and combined effect of chlorogenic acid and tetrahydrocurcumin on antioxidant disparities in chemical induced experimental diabetes. Mol Cell Biochem 341, 109–117, 2010.10.1007/s11010-010-0442-520339905
- Park I, Ochiai R, Ogata H, Kayaba M, Hari S, Hibi M, Katsuragi Y, Satoh M, Tokuyama K. Effects of subacute ingestion of chlorogenic acids on sleep architecture and energy metabolism through activity of the autonomic nervous system: a randomised, placebo-controlled, double-blinded cross-over trial. Br J Nutr 117, 979–984, 2017.10.1017/S0007114517000587
- Plumb GW, Garcia-Conesa MT, Kroon PA, Rhodes M, Ridley S and Williamson G. Metabolism of chlorgenic acid by human plasma liver, intestine and gut microflora. J Sci Food Agric 79, 390–392, 1999.10.1002/(SICI)1097-0010(19990301)79:3<390::AID-JSFA258>3.0.CO;2-0
- Roy S, Metya SK, Sannigrahi S, Rahaman N, Ahmed F. Treatment with ferulic acid to rats with streptozotocin-induced diabetes: effects on oxidative stress, pro-inflammatory cytokines, and apoptosis in the pancreatic β cell. Endocrine 44, 369–379, 2013.10.1007/s12020-012-9868-8
- Schmidt AM, Yan SD, Yan SF, Stern DM. The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta 1498, 99–111, 2000.10.1016/S0167-4889(00)00087-2
- Steinberg D. Antioxidants in the prevention of human atherosclerosis. Summary of the proceedings of a National Heart, Lung, and Blood Institute Workshop: September 5-6, 1991, Bethesda, Maryland. Circulation 85, 2337–2344, 1992.10.1161/01.CIR.85.6.2337
- Toma L, Sanda GM, Niculescu LS, Deleanu M, Stancu CS, Sima AV. Caffeic acid attenuates the inflammatory stress induced by glycated LDL in human endothelial cells by mechanisms involving inhibition of AGE-receptor, oxidative, and endoplasmic reticulum stress. Biofactors 43, 685–697, 2017.10.1002/biof.1373
- Tomas-Barberan F, Garcia-Villalba R, Quartieri A, Raimondi S, Amaretti A, Leonardi A, Rossi M. In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res 58, 1122–1131, 2014.10.1002/mnfr.201300441
- van Bruggen R, Gorter K, Stolk RP, Zuithoff P, Klungel OH, Rutten GE. Refill adherence and polypharmacy among patients with type 2 diabetes in general practice. Pharmacoepidemiol Drug Safe 18, 983–991, 2009.10.1002/pds.1810
- van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 32,1023–1025, 2009.10.2337/dc09-0207
- Wang H, Li Q, Deng W, Omari-Siaw E, Wang Q, Wang S, Wang S, Cao X, Xu X, Yu J. Self-nanoemulsifying drug delivery system of trans-cinnamic acid, formulation development and pharmacodynamic evaluation in alloxan-induced type 2 diabetic rat model. Drug Develop Res 76, 82–93, 2015.10.1002/ddr.21244
- Wang W, Pan Y, Zhou H, Wang L, Chen X, Song G, Liu J, Li A. Ferulic acid suppresses obesity and obesity-related metabolic syndromes in high fat diet-induced obese C57BL/6J mice. Food Agri Immunol 29, 1116–1125, 2018.10.1080/09540105.2018.1516739
- Witztum JL, Steinberg D. Role of oxidized low-density lipoprotein in atherogenesis. J Clin Invest 88, 1785–1792, 1991.10.1172/JCI1154992957451752940
- Wright E Jr, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract 60, 308–314, 2006.10.1111/j.1368-5031.2006.00825.x144869416494646
- Yoo KM, Lee C, Lo YM, Moon B. The hypoglycemic effects of American red ginseng (Panax quinquefolius L.) on a diabetic mouse model. J Food Sci 77, H147–H152, 2012.10.1111/j.1750-3841.2012.02748.x22757707
- Zhao G, Dharmadhikari G, Maedler K, Meyer-Hermann M. Possible role of interleukin-1β in type 2 diabetes onset and implications for anti-inflammatory therapy strategies. PLoS Computat Biol 10, e1003798, 2014.10.1371/journal.pcbi.1003798414819525167060
- Zhao Y, Wang J, Ballevre O, Luo H, Zhang W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens Res 35, 370–374, 2012.10.1038/hr.2011.19522072103
- Zuniga LY, Aceves-de la Mora MCA, Gonzalez-Ortiz M, Ramos-Nunez JL, Martinez-Abundis E. Effect of chlorogenic acid administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance. J Med Food 21, 469–473, 2018.10.1089/jmf.2017.011029261010