Have a personal or library account? Click to login
Exposure to a single immobilization or lipopolysaccharide challenge increases expression of genes implicated in the development of Alzheimer’s disease in the mice brain cortex Cover

Exposure to a single immobilization or lipopolysaccharide challenge increases expression of genes implicated in the development of Alzheimer’s disease in the mice brain cortex

Open Access
|May 2019

References

  1. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T. Inflammation and Alzheimer’s disease. Neurobiol Aging 21, 383–421, 2000.10.1016/S0197-4580(00)00124-X
  2. Baglietto-Vargas D, Chen Y, Suh D, Ager RR, Rodriguez-Ortiz CJ, Medeiros R, Myczek K, Green KN, Baram TZ, LaFerla FM. Short-term modern life-like stress exacerbates Abeta-pathology and synapse loss in 3xTg-AD mice. J Neurochem 134, 915–926, 2015.10.1111/jnc.13195479211826077803
  3. Biber K, Neumann H, Inoue K, Boddeke HW. Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30, 596–602, 2007.1795092610.1016/j.tins.2007.08.00717950926
  4. Bidzhekov K, Zernecke A, Weber C. MCP-1 induces a novel transcription factor with proapoptotic activity. Circ Res 98, 1107–1109, 2006.10.1161/01.RES.0000223483.12225.8016690887
  5. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8, 57–69, 2007.10.1038/nrn203817180163
  6. Catania C, Sotiropoulos I, Silva R, Onofri C, Breen KC, Sousa N, Almeida OF. The amyloidogenic potential and behavioral correlates of stress. Mol Psychiatry 14, 95–105, 2009.1791224910.1038/sj.mp.400210117912249
  7. Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8, 1254–1266, 2012.10.7150/ijbs.4679349144923136554
  8. Filipcik P, Novak P, Mravec B, Ondicova K, Krajciova G, Novak M, Kvetnansky R. Tau protein phosphorylation in diverse brain areas of normal and CRH deficient mice: up-regulation by stress. Cell Mol Neurobiol 32, 837–845, 2012.2222243910.1007/s10571-011-9788-922222439
  9. Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci 26, 9047–9056, 2006.10.1523/JNEUROSCI.2797-06.2006667533516943563
  10. Guerriero F, Sgarlata C, Francis M, Maurizi N, Faragli A, Perna S, Rondanelli M, Rollone M, Ricevuti G. Neuroinflammation, immune system and Alzheimer disease: searching for the missing link. Aging Clin Exp Res 29, 821–831, 2017.10.1007/s40520-016-0637-z2771817327718173
  11. Huang NQ, Jin H, Zhou SY, Shi JS, Jin F. TLR4 is a link between diabetes and Alzheimer’s disease. Behav Brain Res 316, 234–244, 2017.10.1016/j.bbr.2016.08.047
  12. Chong Y. Effect of a carboxy-terminal fragment of the Alzheimer’s amyloid precursor protein on expression of proinflammatory cytokines in rat glial cells. Life Sci 61, 2323–2333, 1997.10.1016/S0024-3205(97)00936-3
  13. Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, Imhof C, Manalastas A, Hilfiker M, Pfister S, Schwerdel C, Riether C, Meyer U, Knuesel I. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflammation 9, 151, 2012.2274775310.1186/1742-2094-9-151348316722747753
  14. Kvetnansky R, Mikulaj L. Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress. Endocrinology 87, 738–743, 1970.10.1210/endo-87-4-7385453288
  15. Lai AY, McLaurin J. Clearance of amyloid-beta peptides by microglia and macrophages: the issue of what, when and where. Future Neurol 7, 165–176, 2012.10.2217/fnl.12.6338006422737039
  16. Le MH, Weissmiller AM, Monte L, Lin PH, Hexom TC, Natera O, Wu C, Rissman RA. Functional impact of corticotropin-releasing factor exposure on Tau phosphorylation and axon transport. PLoS One 11, e0147250, 2016.2679009910.1371/journal.pone.0147250472040226790099
  17. Liu X, Wu Z, Hayashi Y, Nakanishi H. Age-dependent neuroinflammatory responses and deficits in long-term potentiation in the hippocampus during systemic inflammation. Neuroscience 216, 133–142, 2012.10.1016/j.neuroscience.2012.04.05022554776
  18. Liu YZ, Wang YX, Jiang CL. Inflammation: The common pathway of stress-related diseases. Front Hum Neurosci 11, 316, 2017.10.3389/fnhum.2017.00316547678328676747
  19. Marklund N, Farrokhnia N, Hanell A, Vanmechelen E, Enblad P, Zetterberg H, Blennow K, Hillered L. Monitoring of beta-amyloid dynamics after human traumatic brain injury. J Neurotrauma 31, 42–55, 2014.10.1089/neu.2013.296423829439
  20. Mecca C, Giambanco I, Donato R, Arcuri C. Microglia and aging: the role of the TREM2–DAP12 and CX3CL1CX3CR1 axes. Int J Mol Sci 19, 318, 2018.10.3390/ijms19010318579626129361745
  21. Modur V, Li Y, Zimmerman GA, Prescott SM, McIntyre TM. Retrograde inflammatory signaling from neutrophils to endothelial cells by soluble interleukin-6 receptor alpha. J Clin Invest 100, 2752–2756, 1997.938973910.1172/JCI119821
  22. Moraes CF, Lins TC, Carmargos EF, Naves JO, Pereira RW, Nobrega OT. Lessons from genome-wide association studies findings in Alzheimer’s disease. Psychogeriatrics 12, 62–73, 2012.10.1111/j.1479-8301.2011.00378.x
  23. Muller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 18, 281–298, 2017.10.1038/nrn.2017.29
  24. Murakami N, Yamaki T, Iwamoto Y, Sakakibara T, Kobori N, Fushiki S, Ueda S. Experimental brain injury induces expression of amyloid precursor protein, which may be related to neuronal loss in the hippocampus. J Neurotrauma 15, 993–1003, 1998.10.1089/neu.1998.15.993
  25. Nakano Y, Furube E, Morita S, Wanaka A, Nakashima T, Miyata S. Astrocytic TLR4 expression and LPS-induced nuclear translocation of STAT3 in the sensory circumventricular organs of adult mouse brain. J Neuroimmunol 278, 144–158, 2015.10.1016/j.jneuroim.2014.12.013
  26. Novak P, Cente M, Kosikova N, Augustin T, Kvetnansky R, Novak M, Filipcik P. Stress-induced alterations of immune profile in animals suffering by Tau protein-driven neurodegeneration. Cell Mol Neurobiol 38, 243–259, 2018.10.1007/s10571-017-0491-328405903
  27. Piirainen S, Youssef A, Song C, Kalueff AV, Landreth GE, Malm T, Tian L. Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer’s disease: the emerging role for microglia? Neurosci Biobehav Rev 77, 148–164, 2017.10.1016/j.neubiorev.2017.01.046
  28. Ringheim GE, Szczepanik AM, Petko W, Burgher KL, Zhu SZ, Chao CC. Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex. Brain Res Mol Brain Res 55, 35–44, 1998.964595810.1016/S0169-328X(97)00356-2
  29. Rissman RA, Lee KF, Vale W, Sawchenko PE. Corticotropin-releasing factor receptors differentially regulate stressinduced tau phosphorylation. J Neurosci 27, 6552–6562, 2007.10.1523/JNEUROSCI.5173-06.2007
  30. Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, Faggioni R, Luini W, van Hinsbergh V, Sozzani S, Bussolino F, Poli V, Ciliberto G, Mantovani A. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6, 315–325, 1997.10.1016/S1074-7613(00)80334-9
  31. Sathyanesan M, Haiar JM, Watt MJ, Newton SS. Restraint stress differentially regulates inflammation and glutamate receptor gene expression in the hippocampus of C57BL/6 and BALB/c mice. Stress 20, 197–204, 2017.2827415210.1080/10253890.2017.1298587
  32. Shen X, Chen J, Li J, Kofler J, Herrup K. Neurons in vulnerable regions of the Alzheimer’s disease brain display reduced ATM signaling. eNeuro 3, ENEURO.0124–0115.2016, 2016.10.1523/ENEURO.0124-15.2016
  33. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3, 1101–1108, 2008.10.1038/nprot.2008.7318546601
  34. Small SA, Duff K. Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron 60, 534–542, 2008.10.1016/j.neuron.2008.11.007
  35. Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82, 756–771, 2014.10.1016/j.neuron.2014.05.004
  36. White JD, Peterman JL, Hardy A, Eimerbrink MJ, Paulhus KC, Thompson MA, Chumley MJ, Boehm GW. Prior exposure to repeated peripheral LPS injections prevents further accumulation of hippocampal beta-amyloid. Brain Behav Immun 66, e12–e13, 2017.10.1016/j.bbi.2017.07.056
  37. Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci 8, 447, 2014.10.3389/fnins.2014.00447
  38. Wolf Y, Yona S, Kim KW, Jung S. Microglia, seen from the CX3CR1 angle. Front Cell Neurosci 7, 26, 2013.10.3389/fncel.2013.00026
  39. Yamamoto M, Horiba M, Buescher JL, Huang D, Gendelman HE, Ransohoff RM, Ikezu T. Overexpression of monocyte chemotactic protein-1/CCL2 in beta-amyloid precursor protein transgenic mice show accelerated diffuse beta-amyloid deposition. Am J Pathol 166, 1475–1485, 2005.10.1016/S0002-9440(10)62364-4
  40. Yamamoto M, Kiyota T, Walsh SM, Ikezu T. Kinetic analysis of aggregated amyloid-beta peptide clearance in adult bone-marrow-derived macrophages from APP and CCL2 transgenic mice. J Neuroimmune Pharmacol 2, 213–221, 2007.10.1007/s11481-006-9049-818040846
  41. Yi MH, Zhang E, Kang JW, Shin YN, Byun JY, Oh SH, Seo JH, Lee YH, Kim DW. Expression of CD200 in alternative activation of microglia following an excitotoxic lesion in the mouse hippocampus. Brain Res 1481, 90–96, 2012.10.1016/j.brainres.2012.08.05322975132
  42. Zhang C, Kuo CC, Moghadam SH, Monte L, Campbell SN, Rice KC, Sawchenko PE, Masliah E, Rissman RA. Corticotropin-releasing factor receptor-1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer’s disease. Alzheimers Dement 12, 527–537, 2016.10.1016/j.jalz.2015.09.007486018226555315
  43. Zhao J, O’Connor T, Vassar R. The contribution of activated astrocytes to Abeta production: implications for Alzheimer’s disease pathogenesis. J Neuroinflammation 8, 150, 2011.10.1186/1742-2094-8-150321600022047170
  44. Zhou L, Azfer A, Niu J, Graham S, Choudhury M, Adamski FM, Younce C, Binkley PF, Kolattukudy PE. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 98, 1177–1185, 2006.10.1161/01.RES.0000220106.64661.71152342516574901
DOI: https://doi.org/10.2478/enr-2019-0012 | Journal eISSN: 1336-0329 | Journal ISSN: 1210-0668
Language: English
Page range: 100 - 109
Published on: May 13, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Alexandra Padova, Ivana Rokytova, Boris Mravec, Richard Kvetnansky, Peter Vargovic, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.