Have a personal or library account? Click to login
Review of sentiment analysis in new product development: text, audio, visual, and multimodal data Cover

Review of sentiment analysis in new product development: text, audio, visual, and multimodal data

Open Access
|Dec 2025

References

  1. Altuntaş, S., Özsoy, E. B., & Mor, Ş. (2019). Innovative new product development: a case study. Procedia Computer Science, 158, 214-221. doi: 10.1016/j.procs.2019.09.044
  2. Awajan, I., Mohamad, M. S., & Al-Quran, A. (2021). Sentiment analysis technique and neutrosophic set theory for mining and ranking big data from online reviews. IEEE Access, 9, 47338-47353. doi: 10.1109/access.2021.3067844
  3. Bates, M. (1995). Models of natural language understanding. Proceedings of the National Academy of Sciences of the United States of America, 92(22), 9977-9982. doi: 10.1073/pnas.92.22.9977
  4. Benlahbib, A., & Nfaoui, E. H. (2021). MTVRep: A movie and TV show reputation system based on fine-grained sentiment and semantic analysis. International Journal of Power Electronics and Drive Systems/International Journal of Electrical and Computer Engineering, 11(2), 1613. doi: 10.11591/ijece.v11i2.pp1613-1626
  5. Bodolica, V., & Spraggon, M. (2018). An end-to-end process of writing and publishing influential literature review articles. Management Decision, 56(11), 2472-2486. doi: 10.1108/md-03-2018-0253
  6. Botchway, R. K., Jibril, A. B., Oplatková, Z. K., & Chovancová, M. (2020). Deductions from a Sub-Saharan African Bank’s Tweets: A sentiment analysis approach. Cogent Economics & Finance, 8(1), 1776006. doi: 10.1080/23322039.2020.1776006
  7. Chandrasekaran, G., Nguyen, T. N., & Hemanth, D. J. (2021). Multimodal sentimental analysis for social media applications: A comprehensive review. Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery, 11(5). doi: 10.1002/widm.1415
  8. Chiarello, F., Bonaccorsi, A., & Fantoni, G. (2020). Technical Sentiment Analysis. Measuring advantages and drawbacks of new products using social media. Computers in Industry, 123, 103299. doi: 10.1016/j.compind.2020.103299
  9. Craig, A., & Hart, S. (1992). Where to now in new product development research? European Journal of Marketing, 26(11), 2-49. doi: 10.1108/03090569210023037
  10. Ding, X., & Liu, B. (2007). The utility of linguistic rules in opinion mining. Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval. doi: 10.1145/1277741.1277921
  11. Drus, Z., & Khalid, H. (2019). Sentiment Analysis in Social Media and its Application: Systematic Literature review. Procedia Computer Science, 161, 707-714. doi: 10.1016/j.procs.2019.11.174
  12. Gandhi, A., Adhvaryu, K., Poria, S., Cambria, E., & Hussain, A. (2023). Multimodal sentiment analysis: A systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions. Information Fusion, 91, 424-444. doi: 10.1016/j.inffus.2022.09.025
  13. Govindaraj, S., & Gopalakrishnan, K. (2016). Intensified Sentiment Analysis of Customer Care Audio using Acoustic and Textual Features. ETRI Journal, 8(3), 494-501. doi: 10.4218/etrij.16.0115.0684
  14. Hou, S., Tuerhong, G., & Wushouer, M. (2023a). VISDANET: Visual Distillation and Attention Network for Multimodal Sentiment Classification. Sensors, 23(2), 661. doi: 10.3390/s23020661
  15. Hou, S., Tuerhong, G., & Wushouer, M. (2023b). USBVISDANET: User Behavior Visual Distillation and Attention Network for Multimodal Sentiment Classification. Sensors, 23(10), 4829. doi: 10.3390/s23104829
  16. Hoyer, W. D., Chandy, R., Dorotić, M., Krafft, M., & Singh, S. S. (2010). Consumer cocreation in new product development. Journal of Service Research, 13(3), 283-296. doi: 10.1177/1094670510375604
  17. Huang, F., Wei, K., Weng, J., & Li, Z. (2020). Attention-Based Modality-Gated networks for Image-Text Sentiment analysis. ACM Transactions on Multimedia Computing, Communications and Applications/ACM Transactions on Multimedia Computing Communications and Applications, 16(3), 1-19. doi: 10.1145/3388861
  18. Huang, F., Zhang, X., Zhao, Z., Xu, J., & Li, Z. (2019). Image-text sentiment analysis via deep multimodal attentive fusion. Knowledge-based Systems, 167, 26-37. doi: 10.1016/j.knosys.2019.01.019
  19. Ireland, R., & Liu, A. (2018). Application of data analytics for product design: Sentiment analysis of online product reviews. CIRP Journal of Manufacturing Science and Technology, 23, 128-144. doi: 10.1016/j.cirpj.2018.06.003
  20. Jiang, H., Guo, G., Sabetzadeh, F., & Chan, K. Y. (2022). Model variational consumer preferences based on online reviews using sentiment analysis and PSO-based DENFIS approaches. Journal of Intelligent & Fuzzy Systems, 43(3), 2407-2418. doi: 10.3233/jifs-213057
  21. Jin, J., Li, Y., Ji, P., & Liu, H. (2016). Understanding big consumer opinion data for market-driven product design. International Journal of Production Research, 54(10), 3019-3041. doi: 10.1080/00207543.2016.1154208
  22. Ko, Y. H., Hsu, P., Liu, Y., & Yang, P. (2022). Confirming customer satisfaction with tones of speech. IEEE Access, 10, 83236-83248. doi: 10.1109/access.2022.3196733
  23. Kulcsár, E., Gyurika, I. G., & Csiszér, T. (2022). Network-based - Quality Function Deployment (NB-QFD): The combination of traditional QFD with network science approach and techniques. Computers in Industry, 136, 103592. doi: 10.1016/j.compind.2021.103592
  24. Kumar, S., Yadava, M., & Roy, P. P. (2019). Fusion of EEG response and sentiment analysis of products review to predict customer satisfaction. Information Fusion, 52, 41-52. doi: 10.1016/j.inffus.2018.11.001
  25. Lovera, F. A., Cardinale, Y., & Homsi, M. N. (2021). Sentiment analysis in Twitter based on knowledge graph and deep learning classification. Electronics, 10(22), 2739. doi: 10.3390/electronics10222739
  26. Lyu, X., Jiang, C., Ding, Y., Zhao, W., & Liu, Y. (2019). Sales prediction by integrating the heat and sentiments of product dimensions. Sustainability, 11(3), 913. doi: 10.3390/su11030913
  27. March-Chordà, I., Gunasekaran, A., & Lloria-Aramburo, B. (2002). Product development process in Spanish SMEs: an empirical research. Technovation, 22(5), 301-312. doi: 10.1016/s0166-4972(01)00021-9
  28. Meena, G., Mohbey, K. K., & Kumar, S. (2023). Sentiment analysis on images using convolutional neural networks based Inception-V3 transfer learning approach. International Journal of Information Management Data Insights, 3(1), 100174. doi: 10.1016/j.jjimei.2023.100174
  29. Nethravathi, P. S., Koti, M. S., Taramol, K. G., Anwar, S., Babu, G. J., & Thinakaran, R. (2022). Real Time Customer Satisfaction Analysis using Facial Expressions and Head-pose Estimation. International Journal of Advanced Computer Science and Applications/International Journal of Advanced Computer Science & Applications, 13(10). doi: 10.14569/ijacsa.2022.0131029
  30. Ng, C. Y., Law, K. M. Y., & Ip, W. H. (2021). Assessing public opinions of products through sentiment analysis. Journal of Organizational and End User Computing, 33(4), 125-141. doi: 10.4018/joeuc.20210701.oa6
  31. Obayed, H. K., Al-Turaihi, F. S., & Alhussayni, K. H. (2021). Sentiment classification of user’s reviews on drugs based on global vectors for word representation and bidirectional long short-term memory recurrent neural network. Indonesian Journal of Electrical Engineering and Computer Science, 23(1), 345. doi: 10.11591/ijeecs.v23.i1.pp345-353
  32. Park, J. (2020). Framework for Sentiment-Driven Evaluation of Customer Satisfaction with Cosmetics Brands. IEEE Access, 8, 98526-98538. doi: 10.1109/access.2020.2997522
  33. Quan, H., Li, S., Zeng, C., Wei, H., & Hu, J. (2023). Big Data and AI-Driven Product Design: A survey. Applied Sciences, 13(16), 9433. doi: 10.3390/app13169433
  34. Rane, A. L., & Kshatriya, A. R. (2020). Audio Opinion Mining and Sentiment Analysis of Customer Product or Services Reviews. In ICDSMLA 2019: Proceedings of the 1st International Conference on Data Science, Machine Learning and Applications (pp. 282-293). Singapore: Springer Singapore.
  35. Renganathan, V., & Upadhya, A. (2022). Dubai Restaurants: A Sentiment Analysis of Tourist Reviews. Academica Turistica, 165-174. doi: 10.26493/2335-4194.14.165-174
  36. Rianmora, S., & Werawatganon, S. (2021). Applying quality function deployment in open innovation engineering. Journal of Open Innovation, 7(1), 26. doi: 10.3390/joitmc7010026
  37. Schemmann, B., Herrmann, A., Chappin, M. M., & Heimeriks, G. (2016). Crowdsourcing ideas: Involving ordinary users in the ideation phase of new product development. Research Policy, 45(6), 1145-1154. doi: 10.1016/j.respol.2016.02.003
  38. Seng, J. K. P., & Ang, L. (2019). Multimodal Emotion and Sentiment Modeling From Unstructured Big Data: Challenges, Architecture, & Techniques. IEEE Access, 7, 90982-90998. doi: 10.1109/access.2019.2926751
  39. Setchi, R., & Asikhia, O. K. (2019). Exploring User Experience with Image Schemas, Sentiments, and Semantics. IEEE Transactions on Affective Computing, 10(2), 182-195. doi: 10.1109/taffc.2017.2705691
  40. Syamala, M., & Nalini, N. (2021). An Efficient Aspect based Sentiment Analysis Model by the Hybrid Fusion of Speech and Text Aspects. International Journal of Advanced Computer Science and Applications/International Journal of Advanced Computer Science & Applications, 12(9). doi: 10.14569/ijacsa.2021.0120920
  41. Truong, Q., & Lauw, H. W. (2023). Concept-Oriented Transformers for Visual Sentiment Analysis. Proceedings of the 16th ACM International Conference on Web Search and Data Mining. doi: 10.1145/3539597.3570437
  42. Truong, Q.T., & Lauw H.W. (2017) isual sentiment analysis for review images with item-oriented and user-oriented CNN. In Proceedings of the 25th ACM international conference on Multimedia (pp. 1274-1282). doi: 10.1145/3123266.3123374
  43. Verza, M., Camanzi, L., Rota, C., Cerjak, M., Mulazzani, L., & Malorgio, G. (2023). Consumer Sentiments and emotions in new seafood Product Concept Development: A Co-Creation approach using online discussion rooms in Croatia, Italy and Spain. Foods, 12(8), 1729. doi: 10.3390/foods12081729
  44. Visalli, M., Mahieu, B., Thomas, A., & Schlich, P. (2020). Automated sentiment analysis of Free-Comment: An indirect liking measurement? Food Quality and Preference, 82, 103888. doi: 10.1016/j.foodqual.2020.103888
  45. Von Hippel, E. (1978). Successful Industrial Products from Customer Ideas. Journal of Marketing, 42(1), 39. doi: 10.2307/1250327
  46. Von Hippel, E. (1986). Lead users: a source of novel product concepts. Management Science, 32(7), 791-805. doi: 10.1287/mnsc.32.7.791
  47. Wind, J., & Mahajan, V. (1997). Issues and Opportunities in new product Development: An introduction to the special issue. Journal of Marketing Research, 34(1), 1-12. doi: 10.1177/002224379703400101
  48. Ye, J., Peng, X., Qiao, Y., Xing, H., Li, J., & Ji, R. (2019). Visual-Textual Sentiment Analysis in Product Reviews. IEEE International Conference on Image Processing, 869-873. doi: 10.1109/icip.2019.8802992
  49. Zad, S., Heidari, M., Jones, J. H., & Uzuner, Ö. (2021). A Survey on Concept-Level Sentiment Analysis Techniques of Textual Data. doi: 10.1109/aiiot52608.2021.9454169
  50. Zhang, H., Wu, J., Shi, H., Jiang, Z., Ji, D., Yuan, T., & Li, G. (2020). Multidimensional extra evidence mining for image sentiment analysis. IEEE Access, 8, 103619-103634. doi: 10.1109/access.2020.2999128
  51. Zhang, J., Chen, D., & Lu, M. (2018). Combining sentiment analysis with a fuzzy Kano model for product aspect preference recommendation. IEEE Access, 6, 59163-59172. doi: 10.1109/access.2018.2875026
DOI: https://doi.org/10.2478/emj-2025-0023 | Journal eISSN: 2543-912X | Journal ISSN: 2543-6597
Language: English
Page range: 1 - 14
Submitted on: May 15, 2024
|
Accepted on: Aug 1, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Randi Eka Sanjaya, Ririn Diar Astanti, The Jin Ai, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.