Have a personal or library account? Click to login
System quality, information quality, perceived usefulness, and ease of use as determinants of intention to continue using a Digital Accounting System among Jordanian SMEs Cover

System quality, information quality, perceived usefulness, and ease of use as determinants of intention to continue using a Digital Accounting System among Jordanian SMEs

Open Access
|Jul 2025

References

  1. Abdullah, A., Thomas, B., Murphy, L., & Plant, E. (2018). An investigation of the benefits and barriers of e-business adoption activities in Yemeni SMEs. Strategic Change, 27(3), 95-208.
  2. Adam, N. A., & Alarifi, G. (2021). Innovation practices for survival of small and medium enterprises (SMEs) in the COVID-19 times: the role of external support. Journal of Innovation and Entrepreneurship, 10(1), 1-22.
  3. Afthanorhan, W. M. A. B. W. (2013). A comparison of partial least square structural equation modeling (PLSSEM) and covariance based structural equation modeling (CB-SEM) for confirmatory factor analysis. International Journal of Engineering Science and Innovative Technology, 2(5), 98-205.
  4. Alawaqleh, Q., & Al-Sohaimat, M. (2017). The relationship between accounting information systems and making investment decisions in the industrial companies listed in the Saudi Stock market. International Business Research, 10(6), 199-211. doi: 10.5539/ibr. v10n6p199
  5. Al-Debei, M. M., Dwivedi, Y. K., & Hujran, O. (2022). Why would telecom customers continue to use mobile value-added services? Journal of Innovation & Knowledge, 7(4), 100242.
  6. Al-Hattami, H. M. (2021). University accounting curriculum, IT, and job market demands: Evidence from Yemen. Sage Open, 11(2), 1-14. doi: 10. 1177/21582440211007111
  7. Al-Hattami, H. M. (2021a). Validation of the D&M IS success model in the context of accounting information system of the banking sector in the least developed countries. Journal of Management Control, 32(1), 127-153.
  8. Al-Hattami, H. M. (2021b). Determinants of intention to continue usage of online shopping under a pandemic: COVID-19. Cogent Business & Management, 8(1), 1936368.
  9. Al-Hattami, H. M. (2022). Impact of AIS success on decision-making effectiveness among SMEs in less developed countries. Information Technology for Development, 1-21. doi: 10.1080/02681102.2022.2073325
  10. Al-Hattami, H. M., & Almaqtari, F. A. (2023). What determines digital accounting systems’ continuance intention? An empirical investigation in SMEs. Humanities and Social Sciences Communications10(1), 1-13.
  11. Al-Hattami, H. M., & Kabra, J. D. (2022). The influence of accounting information system on management control effectiveness: The perspective of SMEs in Yemen. Information Development, 02666669221087184. doi: 10. 1177/02666669221087184
  12. Al-Hattami, H. M., Abdullah, A. A. A. H., Kabra, J. D., Alsoufi, M. A. Z., Gaber, M. M. A., & Shuraim, A. M. A. (2022b). Effect of AIS on planning process effectiveness: a case of SMEs in a less developed nation. The Bottom Line, 35(2/3), 33-52. doi: 10. 1108/ BL-01-2022-0001
  13. Al-Hattami, H. M., Abdullah, A. A. H., & Khamis, A. A. A. (2021a). Determinants of intention to continue using internet banking: Indian context. Innovative Marketing, 17(1), 40–52. doi: 10.21511/ im.17(1).2021.04
  14. Al-Hattami, H. M., Hashed, A. A., & Kabra, J. D. (2021b). Effect of AIS success on performance measures of SMEs: evidence from Yemen. International Journal of Business Information Systems, 36(1), 144-164. doi: 10.1504/IJBIS. 2021.112399
  15. Al-Hattami, H. M., Hashed, A. A., Alnuzaili, K. M., Alsoufi, M. A., Alnakeeb, A. A., & Rageh, H. (2021c). Effect of risk of using computerized AIS on external auditor’s work quality in Yemen. International Journal of Advanced and Applied Sciences, 8(1), 75-81. doi: 10.21833/ijaas.2021.01.010
  16. Al-Hattami, H. M., Senan, N. A. M., Al-Hakimi, M. A., & Azharuddin, S. (2022a). An empirical examination of AIS success at the organizational level in the era of COVID-19 pandemic. Global Knowledge, Memory and Communication, 73(3), 312-330. doi: 10.1108/GKMC-04-2022-0094
  17. Al-Mamary, Y. H. S., Al-Nashmi, M. M., Shamsuddin, A., & Abdulrab, M. (2019). Development of an integrated model for successful adoption of management information systems in Yemeni telecommunication organizations. International Journal of Scientific & Technology Research, 8(11), 39123939.
  18. Al-Mamary, Y. H., Abubakar, A. A., & Abdulrab, M. (2023). The effects of the expectation confirmation model (ECM) and the technology acceptance model (TAM) on learning management systems (LMS) in subsaharan Africa. Interactive Learning Environments, 1-17. doi: 10.1080/ 10494820.2023.2191272
  19. Almaqtari, F. A., Farhan, N. H., Al-Hattami, H. M., & Elsheikh, T. (2023). The moderating role of information technology governance in the relationship between board characteristics and continuity management during the Covid-19 pandemic in an emerging economy. Humanities and Social Sciences Communications, 10(1), 1-16.
  20. Al-Okaily, M., Alghazzawi, R., Alkhwaldi, A. F., & Al-Okaily, A. (2022). The effect of digital accounting systems on the decision-making quality in the banking industry sector: a mediated-moderated model. Global Knowledge, Memory and Communication, 72(8/9), 882-901. doi: 10.1108/GKMC-01-2022-0015
  21. Alzahrani, A. I., Mahmud, I., Ramayah, T., Alfarraj, O., & Alalwan, N. (2019). Modelling digital library success using the DeLone and McLean information system success model. Journal of Librarianship and Information Science, 51(2), 291-306.
  22. Andoh-Baidoo, F. K. (2016). Organizational information and communication technologies for development. Information Technology for Development, 22(2), 193-204. doi: 10.1080/02681102.2016.1160703
  23. Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473.
  24. ASI. (2013). Conducting a study of micro, small, and medium enterprises in Yemen-Adam Smith International. Retrieved from https://adamsmithinternational.com/projects/conducting-a-study-of-micro-small-and-medium-enterprises-in-yemen/#
  25. Belfo, F., & Trigo, A. (2013). Accounting information systems: Tradition and future directions. Procedia Technology, 9, 536-546.
  26. Bhattacherjee, A. (2001) Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370.
  27. Bhattacherjee, A., Perols, J., & Sanford, C. (2008). Information technology continuance: A theoretic extension and empirical test. Journal of Computer Information Systems, 49(1), 17-26.
  28. Charness, N., & Boot, W. R. (2016). Technology, gaming, and social networking. In K. Warner Schaie, S. L. Willis, Handbook of the Psychology of Aging, (pp. 389-407). Oxford, England: Academic Press.
  29. Chen, J. V., Chung, H. Y., Widjaja, A. E., & Ha, Q. A. (2021). An Empirical Investigation of Users’ Continuance Intention to Use Cloud Storage Service for Organizational Uses. International Journal of Business Information Systems, 45(2). doi: 10.1504/ IJBIS.2021.10038640
  30. Cheng, Y-M. (2019). A hybrid model for exploring the antecedents of cloud ERP continuance: Roles of quality determinants and task-technology fit. International Journal of Web Information Systems, 15(2), 215-235. doi: 10.1108/IJWIS-07-2018-0056
  31. Cheng, Y-M. (2020). Understanding cloud ERP continuance intention and individual performance: a TTF-driven perspective. Benchmarking: An International Journal, 27(4), 1591-1614. doi: 10.1108/BIJ-05-2019-0208
  32. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295-336.
  33. Chin, W. W. (2010). How to write up and report PLS analyses. In Handbook of partial least squares (pp. 655–690). Berlin, Germany: Springer.
  34. Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. Statistical Strategies for Small Sample Research, 2, 307-342.
  35. Chiu, W., Cho, H., & Chi, C. G. (2021). Consumers’ continuance intention to use fitness and health apps: an integration of the expectation–confirmation model and investment model. Information Technology & People, 34(3), 978-998. doi: 10.1108/ITP-09-2019-0463
  36. Dalloul, M. H. M., Binti Ibrahim, Z., & Urus, S. T. (2023). The Impact of Quality Dimensions of Accounting Information System Success on the Effectiveness of During-Financial Crisis Management: The Mediating Role of System Usage in a Government Sector Context. Asian Economic and Financial Review, 13(1), 18-48.
  37. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
  38. DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95.
  39. DeLone, W. H., & McLean, E. R. (2003). The De-Lone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 19(4), 9-30. doi: 10.1080/07421222.2003.11045748
  40. Doll, W. J., & Torkzadeh, G. (1988). The measurement of end-user computing satisfaction. MIS quarterly, 12(2), 259-274.
  41. Essam, M., Deif, M. A., Attar, H., Alrosan, A., Kanan, M. A., & Elgohary, K. (2024). Decoding Queries: An In-Depth Survey of Quality Techniques for Question Analysis in Arabic Question Answering Systems. IEEE Access, 12, 135241-135264. doi: 10.1109/ACCESS.2024.3458466.
  42. Fadelelmoula, A. A. (2018). The impacts of the quality dimensions of the ERP system on the realization of the fundamental business objectives and perceived usefulness. International Journal of Enterprise Information Systems, 14(4), 89-107.
  43. Floropoulos, J., Spathis, C., Halvatzis, D., & Tsipouridou, M. (2010). Measuring the success of the Greek taxation information system. International Journal of Information Management, 30(1), 47-56. doi: 10.1016/j.ijinfomgt.2009. 03.013
  44. Franque, F. B., Oliveira, T., & Tam, C. (2021). Understanding the factors of mobile payment continuance intention: empirical test in an African context. Heliyon, 7(8).
  45. Gefen, D., Straub, D., & Boudreau, M. C. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4(7), 1-77. doi: 10.17705/1CAIS. 00407
  46. Grande, E. U., Estébanez, R. P., & Colomina, C. M. (2011). The impact of Accounting Information Systems (AIS) on performance measures: empirical evidence in Spanish SMEs. The international Journal of Digital Accounting Research, 11(1), 25-43.
  47. Granić, A., & Marangunić, N. (2019). Technology acceptance model in educational context: A systematic literature review. British Journal of Educational Technology, 50(5), 2572-2593.
  48. Guo, H., Yang, Z., Huang, R., & Guo, A. (2020). The digitalization and public crisis responses of small and medium enterprises: Implications from a COVID-19 survey. Frontiers of Business Research in China, 14, 1-25.
  49. Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks, USA: Sage.
  50. Halilovic, S., & Cicic, M. (2013). Understanding determinants of information systems users’ behaviour: A comparison of two models in the context of integrated accounting and budgeting software. Behaviour & Information Technology, 32(12), 1280-1291.
  51. Harris, E. (Ed.). (2018). The Routledge Companion to Performance Management and Control. New York, USA: Routledge
  52. Hayat, A., Akhmad, B., Budiman A. (2020). Integrating people and technology in accrual accounting management to support quality financial reporting. Polish Journal of Management Studies, 22(2), 158-172. doi: 10.17512/pjms.2020.22.2.11
  53. Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2-20. doi: 10.1108/IMDS-09-2015-0382
  54. Hou, C. K. (2016). Understanding business intelligence system continuance intention: An empirical study of Taiwan’s electronics industry. Information Development, 32(5), 1359-1371.
  55. Ismail, N. A., Abdullah, S. N., & Tayib, M. (2003). Computer-based accounting systems: The case of manufacturing-based small and medium enterprises in the northern region of peninsular Malaysia. Jurnal Teknologi, 39(1), 19-36.
  56. Jaklič, J., Grublješič, T., & Popovič, A. (2018). The role of compatibility in predicting business intelligence and analytics use intentions. International Journal of Information Management, 43, 305-318.
  57. Khayer, A., Bao, Y., & Nguyen, B. (2020). Understanding cloud computing success and its impact on firm performance: an integrated approach. Industrial Management & Data Systems, 120(5), 963-985. doi: 10.1108/IMDS-06-2019-0327
  58. Kumar, K. A., & Natarajan, S. (2020). An extension of the Expectation Confirmation Model (ECM) to study continuance behavior in using e-Health services. Innovative Marketing, 16(2), 15-28.
  59. Li, Y., & Wang, J. (2021). Evaluating the Impact of Information System Quality on Continuance Intention Toward Cloud Financial Information System. Frontiers in Psychology, 12(12), 713353.
  60. Mehta, N., Chauhan, S., & Kaur, I. (2022). Extending the story of IS success: A meta-analytic investigation of contingency factors at individual and organisational levels. European Journal of Information Systems, 31(5), 617-640.
  61. Mishra, A., Shukla, A., Rana, N. P., Currie, W. L., & Dwivedi, Y. K. (2023). Re-examining post- acceptance model of information systems continuance: A revised theoretical model using MASEM approach. International Journal of Information Management, 68, 102571.
  62. Mohammad, A. A. (2018). An exploration of accounting information system’s role in SMEs failure triangular. International Journal of Agile Systems and Management, 11(2), 155-178. doi: 10.1504/IJASM.2018.092546
  63. Monteiro, A. P., Vale, J., Leite, E., Lis, M., & Kurowska-Pysz, J. (2022). The impact of information systems and non-financial information on company success. International Journal of Accounting Information Systems, 45, 100557.
  64. Nair, S., Radman, O., & Ahamad, S. (2020). The budgetary process and its effects on financial performance: a study on small and medium enterprises in Yemen. International Journal of Innovation. Creativity and Change, 14(4), 816-834.
  65. OCHA, (2021). Yemen Socio-Economic Update. Retrieved from https://reliefweb.int/report/yemen/yemen-socio-economic-update-issue-66-november-2021-enar
  66. Petter, S., DeLone, W., & McLean, E. (2008). Measuring information systems success: models, dimensions, measures, and interrelationships. European Journal of Information Systems, 17(3), 236-263. doi: 10.1057/ ejis.2008.15
  67. Qutaishat, F., Abushakra, A., Anaya, L. & Al-Omari, M. (2023). Investigating the factors affecting the intention to adopt cloud-based ERP systems during the COVID-19 era: evidence from Jordan, Business Process Management Journal, 29(3), 653-670. doi: 10.1108/BPMJ-09-2022-0462
  68. Rahi, S., Alghizzawi, M., & Ngah, A. H. (2022). Factors influence user’s intention to continue use of e-banking during COVID-19 pandemic: the nexus between self-determination and expectation confirmation model, EuroMed Journal of Business, 18(3), 380-396. doi: 10.1108/EMJB-12-2021-0194
  69. Ramayah, T., Ahmad, N. H., & Hong, T. S. (2012). An assessment of e-training effectiveness in multinational companies in Malaysia. Journal of Educational Technology & Society, 15(2), 125-137.
  70. Ramdani, B., Raja, S., & Kayumova, M. (2022). Digital innovation in SMEs: a systematic review, synthesis and research agenda. Information Technology for Development, 28(1), 56-80.
  71. Ritchi, H., Azis, Y., Adrianto, Z., Setiono, K., & Sanjaya, S. (2019). In-app controls for small business accounting information system: a study of domain understanding. Journal of Small Business and Enterprise Development, 27(1), 31-51. doi: 10.1108/JSBED-12-2018-0372
  72. Romney, M. B., & Steinbart, P. J. (2016). Accounting information systems. London, England: Pearson.
  73. Rubin, A., & Babbie, E. R. (2016). Empowerment series: Research methods for social work. Boston, USA: Cengage Learning.
  74. Rubino, M., & Vitolla, F. (2014). Internal control over financial reporting: opportunities using the COBIT framework. Managerial Auditing Journal, 29(8), 736-771.
  75. Saleh, M. A. K., & Manjunath, K. R. (2020). Small and medium enterprises in Yemen: Navigating through additional obstacles during Covid-19. In 11th International Conference on Shifting Paradigm in Business, Economy and Society: Vision (Vol. 2050, pp. 1-12).
  76. Schöpfel, J., Azeroual, O., & Saake, G. (2019). Implementation and user acceptance of research information systems: An empirical survey of German universities and research organisations. Data Technologies and Applications, 54(1), 1-15.
  77. Sharma, S. K., & Sharma, M. (2019). Examining the role of trust and quality dimensions in the actual usage of mobile banking services: An empirical investigation. International Journal of Information Management, 44, 65-75.
  78. Suzianti, A., & Paramadini, S. A. (2021). Continuance intention of e-learning: The condition and its connection with open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 97.
  79. Teo, T. S., Srivastava, S. C., & Jiang, L. I. (2008). Trust and electronic government success: An empirical study. Journal of management information systems, 25(3), 99-132.
  80. Ujwary-Gil, A., & Florek-Paszkowska, A. (2025). Introduction to the Innovability Index: Beyond the fusion of innovation and sustainability. Journal of Entrepreneurship, Management, and Innovation, 21(2), 5-14. doi: 10.7341/20252121
  81. Uzialko, A. (2022). Choosing the Right Small Business Accounting Software. Retrieved from https://www.businessnewsdaily.com/7542-choosing-accounting-software.html
  82. Veeramootoo, N., Nunkoo, R., & Dwivedi, Y. K. (2018). What determines success of an e-government service? Validation of an integrative model of e-filing continuance usage. Government Information Quarterly, 35(2), 161-174.
  83. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
  84. Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.
  85. Verkasalo, H. (2008). Dynamics of mobile service adoption. International Journal of E-Business Research, 4(3), 40-63.
  86. Williamson, K., & Johanson, G. (Eds.). (2017). Research methods: Information, systems, and contexts. Col-chester, England: Chandos Publishing.
  87. Xu, H., Horn Nord, J., Daryl Nord, G., & Lin, B. (2003). Key issues of accounting information quality management: Australian case studies. Industrial Management & Data Systems, 103(7), 461-470. doi: 10.1108/02635570310489160
  88. Yan, M., Filieri, R., & Gorton, M. (2021). Continuance intention of online technologies: A systematic literature review. International Journal of Information Management, 58, 102315.
DOI: https://doi.org/10.2478/emj-2025-0013 | Journal eISSN: 2543-912X | Journal ISSN: 2543-6597
Language: English
Page range: 78 - 89
Submitted on: Jan 31, 2025
Accepted on: Jun 5, 2025
Published on: Jul 3, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Moh’d Alsqour, Hani Attar, Mohammad Haider Alibraheem, Sameh Alsaqoor, Enas Alsaleem, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.