Have a personal or library account? Click to login
Trends and challenges of forecasting in the airline industry research Cover

Trends and challenges of forecasting in the airline industry research

Open Access
|Jul 2025

References

  1. Abdella, J. A., Zaki, N. M., Shuaib, K., & Khan, F. (2021). Airline ticket price and demand prediction: A survey. Journal of King Saud University - Computer and Information Sciences, 33(4), 375-391. doi: 10.1016/j.jksuci.2019.02.001
  2. Andrés, E., González-Arribas, D., Soler, M., Kamgarpour, M., & Sanjurjo-Rivo, M. (2021). Informed scenario-based RRT∗ for aircraft trajectory planning under ensemble forecasting of thunderstorms. Transportation Research Part C: Emerging Technologies, 129. doi: 10.1016/j.trc.2021.103232
  3. Asif, S., Rafi, R., & Ali, A. (2020). A bibliometric analysis of revenue management in airline industry. Journal of Revenue and Pricing Management, 2002. doi: 10.1057/s41272-020-00247-1
  4. Banerjee, N., Morton, A., & Akartunalı, K. (2020). Passenger demand forecasting in scheduled transportation. European Journal of Operational Research, 286(3), 797-810. doi: 10.1016/j.ejor.2019.10.032
  5. Baptista, M., Sankararaman, S., de Medeiros, I. P., Nascimento, C., Prendinger, H., & Henriques, E. M. P. (2018). Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling. Computers and Industrial Engineering, 115, 41-53. doi: 10.1016/j.cie.2017.10.033
  6. Caiado, J., & Lúcio, F. (2023). Stock market forecasting accuracy of asymmetric GARCH models during the COVID-19 pandemic. North American Journal of Economics and Finance, 68, 101971. doi: 10.1016/j.najef.2023.101971
  7. Choi, S., Kim, Y. J., Briceno, S., & Mavris, D. (2016). Prediction of weather-induced airline delays based on machine learning algorithms. 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), 1-6. doi: 10.1109/DASC.2016.7777956.
  8. Colizza, V., Barrat, A., Barthélemy, M., & Vespignani, A. (2006). The role of the airline transportation network in the prediction and predictability of global epidemics. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2015-2020. doi: 10.1073/pnas.0510525103
  9. Czerny, A. I., Fu, X., Lei, Z., & Oum, T. H. (2021). Post pandemic aviation market recovery: Experience and lessons from China. Journal of Air Transport Management, 90, 101971. doi: 10.1016/j.jairtraman.2020.101971
  10. ElSaid, A. E. R., El Jamiy, F., Higgins, J., Wild, B., & Desell, T. (2018). Optimizing long short-term memory recurrent neural networks using ant colony optimization to predict turbine engine vibration. Applied Soft Computing Journal, 73, 969-991. doi: 10.1016/j.asoc.2018.09.013
  11. Fan, W., Wu, X., Shi, X. Y., Zhang, C., Wai Hung, I., Kai Leung, Y., & Zneg, L. S. (2023). Support vector regression model for flight demand forecasting. International Journal of Engineering Business Management, 15(2898). doi: 10.1177/18479790231174318
  12. Gudmundsson, S. V., Cattaneo, M., & Redondi, R. (2021). Forecasting temporal world recovery in air transport markets in the presence of large economic shocks: The case of COVID-19. Journal of Air Transport Management, 91, 102007. doi: 10.1016/j.jairtraman.2020.102007
  13. Gui, G., Liu, F., Sun, J., Yang, J., Zhou, Z., & Zhao, D. (2020). Flight delay prediction based on aviation big data and machine learning. IEEE Transactions on Vehicular Technology, 69(1), 140-150. doi: 10.1109/TVT.2019.2954094
  14. Guimarães, M., Soares, C., & Ventura, R. (2022). Decision Support Models for Predicting and Explaining Airport Passenger Connectivity From Data. IEEE Transactions on Intelligent Transportation Systems, 23(9), 16005-16015. doi: 10.1109/TITS.2022.3147155
  15. Hadavandi, E., Shavandi, H., & Ghanbari, A. (2010). Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowledge-Based Systems, 23(8), 800-808. doi: 10.1016/j.knosys.2010.05.004
  16. Halpern, N., Mwesiumo, D., Suau-Sanchez, P., Budd, T., & Bråthen, S. (2021). Ready for digital transformation? The effect of organisational readiness, innovation, airport size and ownership on digital change at airports. Journal of Air Transport Management, 90, 101949. doi: 10.1016/j.jairtraman.2020.101949
  17. Huang, F., Zhang, T., Wang, Q., & Zhou, D. (2023). CO2 emission change in China’s aviation industry: A fleet-wide index decomposition and scenario analysis. Transportation Research Part D: Transport and Environment, 119, 1-16. doi: 10.1016/j.trd.2023.103743
  18. IATA. (2016). Forecasts passenger demand to double over 20 years. Retrieved from https://airlines.iata.org/2016/11/23/passenger-numbers-double-2035
  19. Iddrisu, A. M., Mensah, S., Boafo, F., Yeluripati, G. R., & Kudjo, P. (2023). A sentiment analysis framework to classify instances of sarcastic sentiments within the aviation sector. International Journal of Information Management Data Insights, 3(2), 100180. doi: 10.1016/j.jjimei.2023.100180
  20. İnan, T. T. (2022). Forecasting Recovery Period of the Airfreight Transportation from Covid-19 Pandemic by using Time Series Modelling. Logistics Research, 15(1), 1-18. doi: 10.23773/2022_03
  21. Kang, Z., Shang, J., Feng, Y., Zheng, L., Wang, Q., Sun, H., Qiang, B., & Liu, Z. (2021). A deep sequence-to-sequence method for accurate long landing prediction based on flight data. IET Intelligent Transport Systems, 15(8), 1028-1042. doi: 10.1049/itr2.12078
  22. Lamb, T. L., Winter, S. R., Rice, S., Ruskin, K. J., & Vaughn, A. (2020). Factors that predict passengers willingness to fly during and after the COVID-19 pandemic. Journal of Air Transport Management, 89, 101897. doi: 10.1016/j.jairtraman.2020.101897
  23. Lee, J., Marla, L., & Jacquillat, A. (2020). Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty. Transportation Science, 54(4), 973-997. doi: 10.1287/trsc.2020.0983
  24. Li, Q., Guan, X., & Liu, J. (2023). A CNN-LSTM framework for flight delay prediction. Expert Systems with Applications, 227, 120287. doi: 10.1016/j.eswa.2023.120287
  25. Li, X., de Groot, M., & Bäck, T. (2023). Using forecasting to evaluate the impact of COVID-19 on passenger air transport demand. Decision Sciences, 54(4), 394-409. doi: 10.1111/deci.12549
  26. Linden, E. (2021). Pandemics and environmental shocks: What aviation managers should learn from COVID-19 for long-term planning. Journal of Air Transport Management, 90, 101944. doi: 10.1016/j.jairtraman.2020.101944
  27. Liu, J., Lei, F., Pan, C., Hu, D., & Zuo, H. (2021). Prediction of remaining useful life of multi-stage aero-engine based on clustering and LSTM fusion. Reliability Engineering and System Safety, 214, 107807. doi: 10.1016/j.ress.2021.107807
  28. McGill, J. I., & Van Ryzin, G. J. (1999). Revenue management: research overview and prospects. Transportation Science, 33(2), 233–256. doi: 10.1287/trsc.33.2.233
  29. Nieto, M. R., & Carmona-Benítez, R. B. (2021). An approach to measure the performance and the efficiency of future airport infrastructure. Mathematics, 9(16). doi: 10.3390/math9161873
  30. Oguntona, O. (2020). Longer ‑ term aircraft fleet modelling: narrative review of tools and measures for mitigating carbon emissions from aircraft fleet. CEAS Aeronautical Journal, 11(1), 13-31. doi: 10.1007/s13272-019-00424-y
  31. Pérez-Acebo, H., Linares-Unamunzaga, A., Abejón, R., & Rojí, E. (2018). Research trends in pavement management during the first years of the 21st century: A bibliometric analysis during the 2000-2013 Period. Applied Sciences (Switzerland), 8(7). doi: 10.3390/app8071041
  32. Rahman, T., Zudhy Irawan, M., Noor Tajudin, A., Rizka Fahmi Amrozi, M., & Widyatmoko, I. (2023). Knowledge mapping of cool pavement technologies for urban heat island Mitigation: A Systematic bibliometric analysis. Energy and Buildings, 291. doi: 10.1016/j.enbuild.2023.113133
  33. Samli, R., Firat, M., & Yiltas-Kaplan, D. (2021). Forecasting air travel demand for selected destinations using machine learning methods. Journal of Universal Computer Science, 27(6), 564-581. doi: 10.3897/JUCS.68185
  34. Selcuk, A. M., & Avṣar, Z. M. (2019). Dynamic pricing in airline revenue management. Journal of Mathematical Analysis and Applications, 478(2), 1191-1217. doi: 10.1016/j.jmaa.2019.06.012
  35. Suau-Sanchez, P., Voltes-Dorta, A., & Cugueró-Escofet, N. (2020). An early assessment of the impact of COVID-19 on air transport: Just another crisis or the end of aviation as we know it? Journal of Transport Geography, 86, 102749. doi: 10.1016/j.jtrangeo.2020.102749
  36. Sulistyowati, R., Kuswanto, H., Series, A. T., & Tsr, R. (2018). Hybrid Forecasting Model To Predict Air Passenger and Cargo in Indonesia. International Conference on Information and Communications Technology, 442-447.
  37. Sznajder, M., Ratliff, R., & Kaya, C. (2023). A heuristic for incorporating ancillaries into air choice models with personalization (part 2: integrated multinomial logit and hedonic regression models). Journal of Revenue and Pricing Management, 22(2), 140-151. doi: 10.1057/s41272-022-00400-y
  38. Tang, Y. (2021). Airline Flight Delay Prediction Using Machine Learning Models. ACM International Conference Proceeding Series, 151-154. doi: 10.1145/3497701.3497725
  39. Tascón, D. C., & Díaz Olariaga, O. (2021). Air traffic forecast and its impact on runway capacity. A System Dynamics approach. Journal of Air Transport Management, 90. doi: 10.1016/j.jairtraman.2020.101946
  40. Tseremoglou, I., Bombelli, A., & Santos, B. F. (2022). A combined forecasting and packing model for air cargo loading: A risk-averse framework. Transportation Research Part E: Logistics and Transportation Review, 158, 102579. doi: 10.1016/j.tre.2021.102579
  41. van Ryzin, G., & McGill, J. (2000). Revenue management without forecasting or optimization: an adaptive algorithm for determining airline seat protection levels. Management Science, 46, 760-775.
  42. Vinod, B. (2022). Airline revenue planning and the COVID-19 pandemic. Journal of Tourism Futures, 8(2), 245-253. doi: 10.1108/JTF-02-2021-0055
  43. Wang, J., Lu, X., He, F., & Ma, F. (2020). Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU? International Review of Financial Analysis, 72, 101596. doi: 10.1016/j.irfa.2020.101596
  44. Wang, J., & Pan, W. (2022). Flight delay prediction based on ARIMA. Proceedings - 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), 186-190. doi: 10.1109/ICCEAI55464.2022.00047
  45. Wang, S., & Gao, Y. (2021). A literature review and citation analyses of air travel demand studies published between 2010 and 2020. Journal of Air Transport Management, 97, 102135. doi: 10.1016/j.jairtraman.2021.102135
  46. Wang, T., Zheng, Y., & Xu, H. (2022). A Review of Flight Delay Prediction Methods. International Conference on Big Data Engineering and Education (BDEE), 135-141. doi: 10.1109/BDEE55929.2022.00029
  47. Wang, Y. J., Zhu, Y. F., Zhu, C. P., Wu, F., Yang, H. J., Yan, Y. J., & Hu, C. K. (2019). Indicator of serious flight delays with the approach of time-delay stability. Physica A: Statistical Mechanics and Its Applications, 518, 363-373. doi: 10.1016/j.physa.2018.11.038
  48. Williams, J. K. (2014). Using random forests to diagnose aviation turbulence. Machine Learning, 95(1), 51-70. doi: 10.1007/s10994-013-5346-7
  49. Yan, Z., Zhongs, S., Lin, L., Cui, Z., & Zhao, M. (2022). A step parameters prediction model based on transfer process neural network for exhaust gas temperature estimation after washing aero-engines. Chinese Journal of Aeronautics, 35(3), 98-111. doi: 10.1016/j.cja.2021.07.035
  50. Yang, Z., Chen, Y., Hu, J., Song, Y., & Mao, Y. (2023). Departure delay prediction and analysis based on node sequence data of ground support services for transit flights. Transportation Research Part C: Emerging Technologies, 153, 104217. doi: 10.1016/j.trc.2023.104217
  51. Ye, Q., Zhou, R., & Asmi, F. (2023). Evaluating the Impact of the Pandemic Crisis on the Aviation Industry. Transportation Research Record, 2677(3), 1551-1566. doi: 10.1177/03611981221125741
  52. Zachariah, R. A., Sharma, S., & Kumar, V. (2023). Systematic review of passenger demand forecasting in aviation industry. Multimedia Tools and Applications, 82(30), 46483-46519. doi: 10.1007/s11042-023-15552-1
  53. Zhang, F., & Graham, D. J. (2020). Air transport and economic growth : a review of the impact mechanism and causal relationships. Transport Reviews, 40(4), 506-528. doi: 10.1080/01441647.2020.1738587
DOI: https://doi.org/10.2478/emj-2025-0010 | Journal eISSN: 2543-912X | Journal ISSN: 2543-6597
Language: English
Page range: 23 - 36
Submitted on: Aug 27, 2024
Accepted on: Apr 30, 2025
Published on: Jul 3, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Oki Anita Candra Dewi, Nur Aini Masruroh, Budhi Sholeh Wibowo, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.