References
- Abbasbandy, S., Viranloo, T. A., López-Pouso, Ó., & Nieto, J. J. (2004). Numerical Methods for Fuzzy Differential Inclusions. Computer and Mathematics with Applications, 48, 1633-1641. doi: 10.1016/j. camwa.2004.03.009
- Altarazi, F., & Bao, H. (2015). Investigating the Impact of Buffer Size in Critical Chain Management. Flexible Automation and Intelligent Manufacturing (FAIM2015), 1-8.
- Ashtiani, B., Jalali, G. R., Aryanezhad, M. B., & Makui, A. (2007). A new approach for buffer sizing in critical chain scheduling. In Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 2–4 December 2007, 1037-1041.
- Atkinson, R. (1999). Project Management: Cost, Time and Quality, Two Best Guesses and a Phenomenon, It’s Time to Accept Other Success Criteria. International Journal of Project Management, 17, 337-342. doi: 10.1016/S0263-7863(98)00069-6
- Cserháti, G., & Szabó, L. (2014). The relationship between success criteria and success factors in organizational event projects. International Journal of Project Management, 32, 613-624. doi: 10.1016/j.ijproman.2013.08.008
- Fallah, M., Ashitiani, B., & Aryanezhad, B. (2010). Critical chain project scheduling: utilizing uncertainty for buffer sizing. International Journal of Research and Reviews in Applied Sciences, 3(3), 280-289.
- Ghoddousi, P., Ansari, R., & Makui, A. (2017). A risk-oriented buffer allocation model based on critical chain project management. KSCE Journal of Civil Engineering, 21, 1536-1548. doi: 10.1007/s12205-016-0039-y
- Goldratt, E. M. (1997). Critical Chain. Great Barrington: The North River Press Publishing Corporation.
- Hass, K. B. (2010). Managing complex projects that are too large, too long and too costly. Retrieved from https://www.projecttimes.com/articles/managing-complex-projects-that-are-too-large-too-long-and-too-costly.html
- Hellendoorn, H., & Thomas, C. (1993). Defuzzification in fuzzy controllers. Journal of Intelligent and Fuzzy Systems, 1(2), 109-123. doi: 10.3233/ifs-1993-1202
- Herroelen, W., & Leus, R. (2004). The construction of stable project baseline schedule. European Journal of Operational Research, 156, 550-565. doi: 10.1016/S0377-2217(03)00130-9
- Iranmanesh, H., Mansourian, F., & Kouchaki, S. (2015). Critical chain scheduling: a new approach for feeding buffer sizing. International Journal of Operational Research, 25(1), 114-130. doi: 10.1504/IJOR.2016.073254
- Izmailov, A., Korneva, D., & Kozhemiakim, A. (2016). Project management using the buffers of time and resources. Procedia-Social and Behavioral Sciences, 235, 189-197. doi: 10.1016/j.sbspro.2016.11.014
- Jugdev, K., & Müller, R. (2005). A retrospective look at our evolving understanding of project success. Project Management Journal, 36(4), 9-31. doi: 10.1177/875697280503600403
- Kuchta, D. (2014). A new concept of project robust schedule – use of buffers. Information Technology and Quantitative Management (ITQM 2014), Procedia Computer Science, 31, 957-965. doi: 10.1016/j. procs.2014.05.348
- Leach, L. P. (1999). Critical chain project management improves project performance. Project Management Journal, 30(2), 39-51. doi: 10.1177/875697289903000207
- Leach, L. P. (2003). Schedule and cost buffer sizing: How to account for performance and your model. Project Management Journal, 34(2), 34-47. doi: 10.1177/875697280303400205
- Leach, L. P. (2005). Lean Project Management: Eight Principles for Success. Boise Idaho: Advanced Projects Inc.
- Leach, L. P. (2014). Critical Chain Project Management (Third Edition). Boston: Artech House.
- Li, H., Cao, Y., Lin, Q., & Zhu, H. (2022). Data-driven project buffer sizing in critical chains. Automation in Construction, 135. doi: 10.1016/j.autcon.2022.104134
- Liu, J., & Whangbo, T.-K. (2012). A study on the buffer sizing method of CCPM technique using statistical analysis. In: Lee G., Howard D., Ślęzak D., Hong Y.S. (Eds.), Convergence and Hybrid Information Technology. ICHIT 2012. Communications in Computer and Information Science, 310. Springer, Berlin, Heidelberg.
- Martens, C. D. P., Machado, F. J., Martens, M. L., Oliveira e Silva, T. Q. P., & de Freitas, H. M. R. (2018). Linking entrepreneurial orientation to project. Journal of Project Management, 36(2), 255-266. doi: 10.1016/j.ijproman.2017.10.005
- Min, Z., & Rongqiu, C. (2008). Buffer sized technique in critical chain management: A fuzzy approach. In Wireless Communications. Networking and Mobile Computing, 2008. WiCOM ‘08. 4th International Conference, 12–14 October, 1-4.
- Molinari, F. (2016). A new criterion of choice between generalized triangular fuzzy numbers. Fuzzy Sets and Systems, 296, 51-69. doi: 10.1016/j.fss.2015.11.022
- Moussa, D. A., El-Korany, T. M., Etman, E. E., & Taher, S. F. (2016). Evaluation of critical chain buffer sizing techniques. AICSGE, Egypt, 1-10.
- Müller, R., & Turner, R. (2007). The influence of project managers on project success criteria and project success by type of project. European Management Journal, 25(4), 298-309. doi: 10.1016/j.emj.2007.06.003
- Nafkha, R. (2016). The PERT method in estimating project duration. Information Systems in Management, 5(4), 542-550.
- Newbold, R. (1998). Project Management in the Fast Lane – Applying the Theory of Constraints. Boca Raton: The St. Lucie Press.
- Pedrycz, W. (1993). Fuzzy Control and Fuzzy Systems (Second Extended Edition). England: Research Studies Press.
- Poshdar, M., González, V., Raftery, G., Orozco, F., Romeo, J., & Forcael, E. (2016). A probabilistic-based method to determine optimum size of project buffer in construction schedules. Journal of Construction Engineering and Management, 142(10). doi: 10.1061/(ASCE)CO.1943-7862.0001158
- Project Management Institute. (2013). A Guide to the Project Management Body of Knowledge (5th edition). Newtown Square, USA: PMI.
- Ravalji, J. M., & Deshpande, V. A. (2014). Comparative study of alternatives for 50% rule in critical chain project management. In International Conference on Design, Manufacturing and Mechatronics (pp. 1–10). KJEI’s Trinity College of Engineering and Research.
- Raz, T., Barnes, R., & Dvir, D. (2003). A critical look at critical chain project management. Project Management Journal, 34(4), 24-32. doi: 10.1177/875697280303400404
- Roghanian, E., Alipour, M., & Rezaei, M. (2018). An improved fuzzy critical chain approach in order to face uncertainty in project scheduling. International Journal of Construction Management, 18(1), 1-13. doi: 10.1080/15623599.2016.1225327
- Roychowdhury, S., & Wang, B.-H. (1996). Cooperative neighbors in defuzzification. Fuzzy Sets and Systems, 78(1), 37-49. doi: 10.1016/0165-0114(95)00077-1
- Saade, J. J. M., & Diab, H. B. (2004). Defuzzification methods and new techniques for fuzzy controllers. Iranian Journal of Electrical and Computer Engineering, 3(2), 161-174.
- Sebestyen, Z. (2017). Further considerations in project success. Procedia Engineering, 196, 571-577. doi: 10.1016/j.proeng.2017.08.032
- Serrador, P., & Turner, R. (2014). The relationship between project success and project efficiency. Procedia-Social and Behavioral Sciences, 119, 75-84. doi: 10.1016/j. sbspro.2014.03.011
- She, B., Chen, B., & Hall, N. G. (2021). Buffer sizing in critical chain project management by network decomposition. Omega, 102. doi: 10.1016/j.omega.2020.102382
- Shenhar, A. J., Levy, O., Dvir, D., & Maltz, A. C. (2001). Project success: a multidimensional strategic concept. Long Range Planning, 34(6), 699-725. doi: 10.1016/S0024-6301(01)00097-8
- Shi, Q., & Gong, T. (2010). An improved project buffer sizing approach to critical chain management under resources constraints and fuzzy uncertainty. Artificial Intelligence and Computational Intelligence, IEEE. AICI ‘09. International Conference on. doi: 10.1109/AICI.2009.192
- Slusarczyk, A., Kuchta, D., Verhulst, P., Huyghe, W., Lauryssen, K., & Debal, T. (2013). A comparison of buffer sizing techniques in the critical chain method. Journal of Automation Mobile Robotics and Intelligent Systems, 7(3), 43-56.
- Spalek, S. (2014). Success factors in project management: Literature review. Proceedings of 8th International Technology Education and Development Conference INTED2014, Valencia, Spain (pp. 4828–4835).
- Taher, S. F., & El-Korany, T. M. (2016). Critical chain project management – a critique. 1st International Conference Sustainable Construction and Project Management, Egypt.
- Tenera, A. B. (2008). Critical chain buffer sizing: a comparative study. Paper presented at PMI® Research Conference: Defining the Future of Project Management, Warsaw: Newtown Square, PA: Project Management Institute.
- The Standish Group (2013). The Chaos Manifesto. Think Big. Act Small.
- Tukel, O. I., Rom, W. O., & Eksioglu, S. D. (2006). An investigation of buffer sizing techniques in critical chain scheduling. European Journal of Operational Research, 172(2), 401-416. doi: 10.1016/j. ejor.2004.10.019
- Turner, R., & Zolin, R. (2012). Forecasting success on large projects: Developing reliable scales to predict multiple perspectives by multiple stakeholders over multiple time frames. Project Management Journal, 43(5), 87-99. doi: 10.1002/pmj.21289
- Urbański, M., Haque, A., & Oino, I. (2019). The moderating role of risk management in project planning and project success: Evidence from construction businesses of Pakistan and the UK. Engineering Management in Production and Services, 11(1), 23-35. doi: 10.2478/emj-2019-0002
- Van de Vonder, S., Demeulemesser, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management: The trade-off between stability and makespan. International Journal of Production Economics, 97, 227-240. doi: 10.1016/j.ijpe.2004.08.004
- Wang, Y.-J. (2015). Ranking triangle and trapezoidal fuzzy numbers based on the relative preference relations. Applied Mathematical Modelling, 39(2), 586-599. doi: 10.1016/j.apm.2014.06.011
- Young, R., & Poon, S. (2013). Top management support— almost always necessary and sometimes sufficient for success: Findings from a fuzzy set analysis. International Journal of Project Management, 31(7), 943-957. doi: 10.1016/j.ijproman.2012.11.013
- Zarghami, S. A., Gunawan, I., Corral de Zubielqui, G., & Baroudi, B. (2020). Incorporation of resource reliability into critical chain project management buffer sizing. International Journal of Production Research, 58(20), 6130-6144. doi: 10.1080/00207543.2019.1667041
- Zhang, J., Song, X., & Díaz, E. (2014). Buffer sizing of critical chain based on attribute optimization. Concurrent Engineering, 22(3), 253-264. doi: 10.1177/1063293X14541286
- Zhang, J., Song, X., & Díaz, E. (2016). Project buffer sizing of a critical chain based on comprehensive resource tightness. European Journal of Operational Research, 248(1), 174-182. doi: 10.1016/j.ejor.2015.07.009
- Zohrehvandi, S., & Khalilzadeh, M. (2019). APRT-FMEA buffer sizing method in scheduling of a wind farm construction project. Engineering, Construction and Architectural Management, 26(6), 1129-1150. doi: 10.1108/ECAM-04-2018-0161
- Zohrehvandi, S., & Soltani, R. (2022). Project scheduling and buffer management: A comprehensive review and future directions. Journal of Project Management, 7(2), 121-132. doi: 10.5267/j.jpm.2021.9.002