Have a personal or library account? Click to login
Determining a Fuzzy Model of Time Buffer Size in Critical Chain Project Management Cover

Determining a Fuzzy Model of Time Buffer Size in Critical Chain Project Management

Open Access
|Oct 2024

References

  1. Abbasbandy, S., Viranloo, T. A., López-Pouso, Ó., & Nieto, J. J. (2004). Numerical Methods for Fuzzy Differential Inclusions. Computer and Mathematics with Applications, 48, 1633-1641. doi: 10.1016/j. camwa.2004.03.009
  2. Altarazi, F., & Bao, H. (2015). Investigating the Impact of Buffer Size in Critical Chain Management. Flexible Automation and Intelligent Manufacturing (FAIM2015), 1-8.
  3. Ashtiani, B., Jalali, G. R., Aryanezhad, M. B., & Makui, A. (2007). A new approach for buffer sizing in critical chain scheduling. In Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 2–4 December 2007, 1037-1041.
  4. Atkinson, R. (1999). Project Management: Cost, Time and Quality, Two Best Guesses and a Phenomenon, It’s Time to Accept Other Success Criteria. International Journal of Project Management, 17, 337-342. doi: 10.1016/S0263-7863(98)00069-6
  5. Cserháti, G., & Szabó, L. (2014). The relationship between success criteria and success factors in organizational event projects. International Journal of Project Management, 32, 613-624. doi: 10.1016/j.ijproman.2013.08.008
  6. Fallah, M., Ashitiani, B., & Aryanezhad, B. (2010). Critical chain project scheduling: utilizing uncertainty for buffer sizing. International Journal of Research and Reviews in Applied Sciences, 3(3), 280-289.
  7. Ghoddousi, P., Ansari, R., & Makui, A. (2017). A risk-oriented buffer allocation model based on critical chain project management. KSCE Journal of Civil Engineering, 21, 1536-1548. doi: 10.1007/s12205-016-0039-y
  8. Goldratt, E. M. (1997). Critical Chain. Great Barrington: The North River Press Publishing Corporation.
  9. Hass, K. B. (2010). Managing complex projects that are too large, too long and too costly. Retrieved from https://www.projecttimes.com/articles/managing-complex-projects-that-are-too-large-too-long-and-too-costly.html
  10. Hellendoorn, H., & Thomas, C. (1993). Defuzzification in fuzzy controllers. Journal of Intelligent and Fuzzy Systems, 1(2), 109-123. doi: 10.3233/ifs-1993-1202
  11. Herroelen, W., & Leus, R. (2004). The construction of stable project baseline schedule. European Journal of Operational Research, 156, 550-565. doi: 10.1016/S0377-2217(03)00130-9
  12. Iranmanesh, H., Mansourian, F., & Kouchaki, S. (2015). Critical chain scheduling: a new approach for feeding buffer sizing. International Journal of Operational Research, 25(1), 114-130. doi: 10.1504/IJOR.2016.073254
  13. Izmailov, A., Korneva, D., & Kozhemiakim, A. (2016). Project management using the buffers of time and resources. Procedia-Social and Behavioral Sciences, 235, 189-197. doi: 10.1016/j.sbspro.2016.11.014
  14. Jugdev, K., & Müller, R. (2005). A retrospective look at our evolving understanding of project success. Project Management Journal, 36(4), 9-31. doi: 10.1177/875697280503600403
  15. Kuchta, D. (2014). A new concept of project robust schedule – use of buffers. Information Technology and Quantitative Management (ITQM 2014), Procedia Computer Science, 31, 957-965. doi: 10.1016/j. procs.2014.05.348
  16. Leach, L. P. (1999). Critical chain project management improves project performance. Project Management Journal, 30(2), 39-51. doi: 10.1177/875697289903000207
  17. Leach, L. P. (2003). Schedule and cost buffer sizing: How to account for performance and your model. Project Management Journal, 34(2), 34-47. doi: 10.1177/875697280303400205
  18. Leach, L. P. (2005). Lean Project Management: Eight Principles for Success. Boise Idaho: Advanced Projects Inc.
  19. Leach, L. P. (2014). Critical Chain Project Management (Third Edition). Boston: Artech House.
  20. Li, H., Cao, Y., Lin, Q., & Zhu, H. (2022). Data-driven project buffer sizing in critical chains. Automation in Construction, 135. doi: 10.1016/j.autcon.2022.104134
  21. Liu, J., & Whangbo, T.-K. (2012). A study on the buffer sizing method of CCPM technique using statistical analysis. In: Lee G., Howard D., Ślęzak D., Hong Y.S. (Eds.), Convergence and Hybrid Information Technology. ICHIT 2012. Communications in Computer and Information Science, 310. Springer, Berlin, Heidelberg.
  22. Martens, C. D. P., Machado, F. J., Martens, M. L., Oliveira e Silva, T. Q. P., & de Freitas, H. M. R. (2018). Linking entrepreneurial orientation to project. Journal of Project Management, 36(2), 255-266. doi: 10.1016/j.ijproman.2017.10.005
  23. Min, Z., & Rongqiu, C. (2008). Buffer sized technique in critical chain management: A fuzzy approach. In Wireless Communications. Networking and Mobile Computing, 2008. WiCOM ‘08. 4th International Conference, 12–14 October, 1-4.
  24. Molinari, F. (2016). A new criterion of choice between generalized triangular fuzzy numbers. Fuzzy Sets and Systems, 296, 51-69. doi: 10.1016/j.fss.2015.11.022
  25. Moussa, D. A., El-Korany, T. M., Etman, E. E., & Taher, S. F. (2016). Evaluation of critical chain buffer sizing techniques. AICSGE, Egypt, 1-10.
  26. Müller, R., & Turner, R. (2007). The influence of project managers on project success criteria and project success by type of project. European Management Journal, 25(4), 298-309. doi: 10.1016/j.emj.2007.06.003
  27. Nafkha, R. (2016). The PERT method in estimating project duration. Information Systems in Management, 5(4), 542-550.
  28. Newbold, R. (1998). Project Management in the Fast Lane – Applying the Theory of Constraints. Boca Raton: The St. Lucie Press.
  29. Pedrycz, W. (1993). Fuzzy Control and Fuzzy Systems (Second Extended Edition). England: Research Studies Press.
  30. Poshdar, M., González, V., Raftery, G., Orozco, F., Romeo, J., & Forcael, E. (2016). A probabilistic-based method to determine optimum size of project buffer in construction schedules. Journal of Construction Engineering and Management, 142(10). doi: 10.1061/(ASCE)CO.1943-7862.0001158
  31. Project Management Institute. (2013). A Guide to the Project Management Body of Knowledge (5th edition). Newtown Square, USA: PMI.
  32. Ravalji, J. M., & Deshpande, V. A. (2014). Comparative study of alternatives for 50% rule in critical chain project management. In International Conference on Design, Manufacturing and Mechatronics (pp. 1–10). KJEI’s Trinity College of Engineering and Research.
  33. Raz, T., Barnes, R., & Dvir, D. (2003). A critical look at critical chain project management. Project Management Journal, 34(4), 24-32. doi: 10.1177/875697280303400404
  34. Roghanian, E., Alipour, M., & Rezaei, M. (2018). An improved fuzzy critical chain approach in order to face uncertainty in project scheduling. International Journal of Construction Management, 18(1), 1-13. doi: 10.1080/15623599.2016.1225327
  35. Roychowdhury, S., & Wang, B.-H. (1996). Cooperative neighbors in defuzzification. Fuzzy Sets and Systems, 78(1), 37-49. doi: 10.1016/0165-0114(95)00077-1
  36. Saade, J. J. M., & Diab, H. B. (2004). Defuzzification methods and new techniques for fuzzy controllers. Iranian Journal of Electrical and Computer Engineering, 3(2), 161-174.
  37. Sebestyen, Z. (2017). Further considerations in project success. Procedia Engineering, 196, 571-577. doi: 10.1016/j.proeng.2017.08.032
  38. Serrador, P., & Turner, R. (2014). The relationship between project success and project efficiency. Procedia-Social and Behavioral Sciences, 119, 75-84. doi: 10.1016/j. sbspro.2014.03.011
  39. She, B., Chen, B., & Hall, N. G. (2021). Buffer sizing in critical chain project management by network decomposition. Omega, 102. doi: 10.1016/j.omega.2020.102382
  40. Shenhar, A. J., Levy, O., Dvir, D., & Maltz, A. C. (2001). Project success: a multidimensional strategic concept. Long Range Planning, 34(6), 699-725. doi: 10.1016/S0024-6301(01)00097-8
  41. Shi, Q., & Gong, T. (2010). An improved project buffer sizing approach to critical chain management under resources constraints and fuzzy uncertainty. Artificial Intelligence and Computational Intelligence, IEEE. AICI ‘09. International Conference on. doi: 10.1109/AICI.2009.192
  42. Slusarczyk, A., Kuchta, D., Verhulst, P., Huyghe, W., Lauryssen, K., & Debal, T. (2013). A comparison of buffer sizing techniques in the critical chain method. Journal of Automation Mobile Robotics and Intelligent Systems, 7(3), 43-56.
  43. Spalek, S. (2014). Success factors in project management: Literature review. Proceedings of 8th International Technology Education and Development Conference INTED2014, Valencia, Spain (pp. 4828–4835).
  44. Taher, S. F., & El-Korany, T. M. (2016). Critical chain project management – a critique. 1st International Conference Sustainable Construction and Project Management, Egypt.
  45. Tenera, A. B. (2008). Critical chain buffer sizing: a comparative study. Paper presented at PMI® Research Conference: Defining the Future of Project Management, Warsaw: Newtown Square, PA: Project Management Institute.
  46. The Standish Group (2013). The Chaos Manifesto. Think Big. Act Small.
  47. Tukel, O. I., Rom, W. O., & Eksioglu, S. D. (2006). An investigation of buffer sizing techniques in critical chain scheduling. European Journal of Operational Research, 172(2), 401-416. doi: 10.1016/j. ejor.2004.10.019
  48. Turner, R., & Zolin, R. (2012). Forecasting success on large projects: Developing reliable scales to predict multiple perspectives by multiple stakeholders over multiple time frames. Project Management Journal, 43(5), 87-99. doi: 10.1002/pmj.21289
  49. Urbański, M., Haque, A., & Oino, I. (2019). The moderating role of risk management in project planning and project success: Evidence from construction businesses of Pakistan and the UK. Engineering Management in Production and Services, 11(1), 23-35. doi: 10.2478/emj-2019-0002
  50. Van de Vonder, S., Demeulemesser, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management: The trade-off between stability and makespan. International Journal of Production Economics, 97, 227-240. doi: 10.1016/j.ijpe.2004.08.004
  51. Wang, Y.-J. (2015). Ranking triangle and trapezoidal fuzzy numbers based on the relative preference relations. Applied Mathematical Modelling, 39(2), 586-599. doi: 10.1016/j.apm.2014.06.011
  52. Young, R., & Poon, S. (2013). Top management support— almost always necessary and sometimes sufficient for success: Findings from a fuzzy set analysis. International Journal of Project Management, 31(7), 943-957. doi: 10.1016/j.ijproman.2012.11.013
  53. Zarghami, S. A., Gunawan, I., Corral de Zubielqui, G., & Baroudi, B. (2020). Incorporation of resource reliability into critical chain project management buffer sizing. International Journal of Production Research, 58(20), 6130-6144. doi: 10.1080/00207543.2019.1667041
  54. Zhang, J., Song, X., & Díaz, E. (2014). Buffer sizing of critical chain based on attribute optimization. Concurrent Engineering, 22(3), 253-264. doi: 10.1177/1063293X14541286
  55. Zhang, J., Song, X., & Díaz, E. (2016). Project buffer sizing of a critical chain based on comprehensive resource tightness. European Journal of Operational Research, 248(1), 174-182. doi: 10.1016/j.ejor.2015.07.009
  56. Zohrehvandi, S., & Khalilzadeh, M. (2019). APRT-FMEA buffer sizing method in scheduling of a wind farm construction project. Engineering, Construction and Architectural Management, 26(6), 1129-1150. doi: 10.1108/ECAM-04-2018-0161
  57. Zohrehvandi, S., & Soltani, R. (2022). Project scheduling and buffer management: A comprehensive review and future directions. Journal of Project Management, 7(2), 121-132. doi: 10.5267/j.jpm.2021.9.002
DOI: https://doi.org/10.2478/emj-2024-0023 | Journal eISSN: 2543-912X | Journal ISSN: 2543-6597
Language: English
Page range: 41 - 55
Submitted on: Aug 15, 2023
Accepted on: May 30, 2024
Published on: Oct 1, 2024
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Katarzyna Marek-Kołodziej, Iwona Łapuńka, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.