Have a personal or library account? Click to login

Green last-mile route planning for efficient e-commerce distribution

Open Access
|Apr 2022

References

  1. Al-Tit, A. A. (2020). E-commerce drivers and barriers and their impact on e-customer loyalty in small and medium-sized enterprises (SMES). Business: Theory and Practice, 21(1), 146-157. doi: 10.3846/btp.2020.11612
  2. Bansal, S., & Wadhawan, S. (2021). A hybrid of sine cosine and particle swarm optimization (HSPS) for solving heterogeneous fixed fleet vehicle routing problem. International Journal of Applied Metaheuristic Computing (IJAMC), 12(1), 41-65.
  3. Belmecheri, F., Prins, C., Yalaoui, F., & Amodeo, L. (2013). Particle swarm optimization algorithm for a vehicle routing problem with heterogeneous fleet, mixed backhauls, and time windows. Journal of Intelligent Manufacturing, 24(4), 775-789.
  4. Bent, R., & Van Hentenryck, P. (2006). A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time windows. Computers & Operations Research, 33(4), 875-893.
  5. Bruglieri, M., Mancini, S., & Pisacane, O. (2019). The green vehicle routing problem with capacitated alternative fuel stations. Computers & Operations Research, 112, 104759.
  6. Chen, M. C., Hsiao, Y. H., Reddy, R. H., & Tiwari, M. K. (2016). The self-learning particle swarm optimization approach for routing pickup and delivery of multiple products with material handling in multiple cross-docks. Transportation Research Part E: Logistics and Transportation Review, 91, 208-226.
  7. Chen, N., & Yang, Y. (2021). The impact of customer experience on consumer purchase intention in cross-border E-commerce – taking network structural embeddedness as mediator variable. Journal of Retailing and Consumer Services, 59, 102344.
  8. Créput, J. C., Koukam, A., Kozlak, J., & Lukasik, J. (2004). An evolutionary approach to pickup and delivery problem with time windows. In International Conference on Computational Science (pp. 1102-1108). Springer, Berlin, Heidelberg.
  9. Fan, H., Zhang, Y., Tian, P., Lv, Y., & Fan, H. (2021). Time-dependent multi-depot green vehicle routing problem with time windows considering temporal-spatial distance. Computers & Operations Research, 129, 105211.
  10. Faugère, L., & Montreuil, B. (2020). Smart locker bank design optimization for urban omnichannel logistics: Assessing monolithic vs. modular configurations. Computers & Industrial Engineering, 139, 105544.
  11. Fedorko, R., Fedorko, I., Riana, I. G., Rigelský, M., Oleárová, M., & Obšatníková, K. (2018). The impact of selected elements of e-commerce to e-shop recommendation. Polish Journal of Management Studies, 18(1), 107-120. doi: 10.17512/pjms.2018.18.1.09
  12. Florek-Paszkowska, A., Ujwary-Gil, A., & Godlewska-Dzioboń, B. (2021). Business innovation and critical success factors in the era of digital transformation and turbulent times. Journal of Entrepreneurship, Management, and Innovation, 17(4), 7-28. doi: 10.7341/20211741
  13. Foroutan, R. A., Rezaeian, J., & Mahdavi, I. (2020). Green vehicle routing and scheduling problem with heterogeneous fleet including reverse logistics in the form of collecting returned goods. Applied Soft Computing, 94, 106462.
  14. Fu, H., Manogaran, G., Wu, K., Cao, M., Jiang, S., & Yang, A. (2020). Intelligent decision-making of online shopping behavior based on internet of things. International Journal of Information Management, 50, 515-525.
  15. Goksal, F. P., Karaoglan, I., & Altiparmak, F. (2013). A hybrid discrete particle swarm optimization for vehicle routing problem with simultaneous pickup and delivery. Computers & Industrial Engineering, 65(1), 39-53.
  16. Gregory, G. D., Ngo, L. V., & Karavdic, M. (2019). Developing e-commerce marketing capabilities and efficiencies for enhanced performance in business-to-business export ventures. Industrial Marketing, 78, 146-157.
  17. Gulc, A. (2021). Multi-stakeholder perspective of courier service quality in B2C e-commerce. PLoS ONE, 16(5), 1-18. doi: 10.1371/journal.pone.0251728
  18. Gupta, P., Govindan, K., Mehlawat, M. K., & Khaitan, A. (2021). Multiobjective capacitated green vehicle routing problem with fuzzy time-distances and demands split into bags. International Journal of Production Research, 1-17.
  19. Harbaoui Dridi, I., Ben Alaïa, E., Borne, P., & Bouchriha, H. (2020). Optimisation of the multi-depots pick-up and delivery problems with time windows and multi-vehicles using PSO algorithm. International Journal of Production Research, 58(14), 4201-4214.
  20. Hasle, G., & Kloster, O. (2007). Industrial vehicle routing. In G. Hasle, K.-A. Lie, E. Quak (Eds.), Geometric modelling, Numerical Simulation, and Optimization (pp.397-435). Berlin, Heidelberg: Springer.
  21. Jacobs, K., Warner, S., Rietra, M., Mazza, L., Buvat, J., Khadikar, A., Cherian, S., & Khemka, Y. (2019). The last-mile delivery challenge: Giving retail and consumer product customers a superior delivery experience without impacting profitability. Retrieved from https://www.capgemini.com/wp-content/uploads/2019/01/Report-Digital-%E2%80%93-Last-Mile-Delivery-Challenge1.pdf
  22. Lagos, C., Guerrero, G., Cabrera, E., Moltedo, A., Johnson, F., & Paredes, F. (2018). An improved particle swarm optimization algorithm for the VRP with simultaneous pickup and delivery and time windows. IEEE Latin America Transactions, 16(6), 1732-1740.
  23. Lemke, J., Iwan, S., & Korczak, J. (2016). Usability of the parcel lockers from the customer perspective – the research in Polish Cities. Transportation Research Procedia, 16, 272-287.
  24. Li, H., & Lim, A. (2003). A metaheuristic for the pickup and delivery problem with time windows. International Journal on Artificial Intelligence Tools, 12(02), 173-186.
  25. Liu, X., Zhang, K., Chen, B., Zhou, J., & Miao, L. (2018). Analysis of logistics service supply chain for the One Belt and One Road initiative of China. Transportation Research Part E: Logistics and Transportation Review, 117, 23-39.
  26. Mehlawat, M. K., Gupta, P., Khaitan, A., & Pedrycz, W. (2019). A hybrid intelligent approach to integrated fuzzy multiple depot capacitated green vehicle routing problem with split delivery and vehicle selection. IEEE Transactions on Fuzzy Systems, 28(6), 1155-1166.
  27. Mutinda Kitukutha, N., Vasa, L., & Oláh, J. (2021). The Impact of COVID-19 on the economy and sustainable e-commerce. Forum Scientiae Oeconomia, 9(2), 47-72. doi: 10.23762/FSO_VOL9_NO2_3
  28. Norouzi, N., Sadegh-Amalnick, M., & Tavakkoli-Moghaddam, R. (2017). Modified particle swarm optimization in a time-dependent vehicle routing problem: minimizing fuel consumption. Optimization Letters, 11, 121-134.
  29. Qin, X., Liu, Z., & Tian, L. (2021). The optimal combination between selling mode and logistics service strategy in an e-commerce market. European Journal of Operational Research, 289(2), 639-651.
  30. Ready, C. (2013). Environmental reporting guidelines: Including mandatory greenhouse gas emissions reporting guidance. Retrieved from https://www.gov.uk/government/publications/environmental-reporting-guidelines-including-mandatory-greenhouse-gas-emissions-reporting-guidance
  31. Rita, P., Oliveira, T., & Farisa, A. (2019). The impact of e-service quality and customer satisfaction on customer behavior in online shopping. Heliyon, 5(10), e02690.
  32. Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360) (pp. 69-73). IEEE.
  33. Sruthi, A., Anbuudayasankar, S. P., & Jeyakumar, G. (2019). Energy-efficient green vehicle routing problem. International Journal of Information Systems and Supply Chain Management (IJISSCM), 12(4), 27-41.
  34. Tsang, Y. P., Wu, C. H., Lam, H. Y., Choy, K. L., & Ho, G. T. S. (2021). Integrating Internet of Things and multi-temperature delivery planning for perishable food E-commerce logistics: a model and application. International Journal of Production Research, 59(5), 1534-1556.
  35. Úbeda, S., Faulin, J., Serrano, A., & Arcelus, F. J. (2014). Solving the green capacitated vehicle routing problem using a tabu search algorithm. Lecture Notes in Management Science, 6(1), 141-149.
  36. United States. Environmental Protection Agency. Office of Policy. (1999). Inventory of US Greenhouse Gas Emissions and Sinks: 1990-1997. The Agency.
  37. Vakulenko, Y., Shams, P., Hellström, D., & Hjort, K. (2019). Service innovation in e-commerce last mile delivery: Mapping the e-customer journey. Journal of Business Research, 101, 461-468.
  38. van Lopik, K., Schnieder, M., Sharpe, R., Sinclair, M., Hinde, C., Conway, P., West, A., & Maguire, M. (2020). Comparison of in-sight and handheld navigation devices toward supporting industry 4.0 supply chains: First and last mile deliveries at the human level. Applied Ergonomics, 82, 102928.
  39. Xu, X., Wang, C., Li, J., & Shi, C. (2019). Green Transportation and Information Uncertainty in Gasoline Distribution: Evidence from China. Emerging Markets Finance and Trade, 57(11), 1-19.
  40. Yu, Y., Wang, S., Wang, J., & Huang, M. (2019). A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows. Transportation Research Part B: Methodological, 122, 511-527.
  41. Yu, Y., Yu, C., Xu, G., Zhong, R. Y., & Huang, G. Q. (2020). An operation synchronization model for distribution center in E-commerce logistics service. Advanced Engineering Informatics, 43, 101014.
  42. Yuen, K. F., Wang, X., Ma, F., & Wong, Y. D. (2019). The determinants of customers’ intention to use smart lockers for last-mile deliveries. Journal of Retailing and Consumer Services, 49, 316-326.
  43. Zhang, X., Zhou, G., Cao, J., & Wu, A. (2020). Evolving strategies of e-commerce and express delivery enterprises with public supervision. Research in Transportation Economics, 80, 100810.
  44. Zhou, M., Zhao, L., Kong, N., Campy, K. S., Xu, G., Zhu, G., Cao, X., & Wang, S. (2020). Understanding consumers’ behavior to adopt self-service parcel services for last-mile delivery. Journal of Retailing and Consumer Services, 52, 101911.
  45. Zhu, L., & Hu, D. (2019). Study on the vehicle routing problem considering congestion and emission factors. International Journal of Production Research, 57(19), 6115-6129.
DOI: https://doi.org/10.2478/emj-2022-0001 | Journal eISSN: 2543-912X | Journal ISSN: 2543-6597
Language: English
Page range: 1 - 12
Submitted on: Oct 28, 2021
Accepted on: Feb 25, 2022
Published on: Apr 22, 2022
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Siwaporn Kunnapapdeelert, James Vincent Johnson, Passarin Phalitnonkiat, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.