References
- Alberto, P. (2000). The logistics of industrial location decisions: An application of the analytic hierarchy process methodology. International Journal of Logistics: Research and Applications, 3(3), 273–289. doi: 10.1080/713682767
- An, Y., Zeng, B., Zhang, Y., & Zhao, L. (2014). Reliable p-median facility location problem: two-stage robust models and algorithms. Transportation Research Part B: Methodological, 64, 54–72. doi: 10.1016/j.trb.2014.02.005
- Ardjmand, E., Park, N., Weckman, G., & Amin-Naseri, M. R. (2014). The discrete Unconscious search and its application to uncapacitated facility location problem. Computers & Industrial Engineering, 73, 32–40. doi: 10.1016/j.cie.2014.04.010
- Athawale, V., Chatterjee, P., & Chakraborty, S. (2012). Decision making for facility location selection using PROMETHEE II method. International Journal of Industrial and Systems Engineering, 11(1–2), 16–30. doi: 10.1504/IJISE.2012.046652
- Aydin, N., & Murat, A. (2013). A swarm intelligence based sample average approximation algorithm for the capacitated reliable facility location problem. International Journal of Production Economics, 145(1), 173–183. doi: 10.1016/j.ijpe.2012.10.019
- Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051–13069. doi: 10.1016/j.eswa.2012.05.056
- Boltürk, E., Çevik Onar, S., Öztayşi, B., Kahraman, C., & Goztepe, K. (2016). Multi-attribute warehouse location selection in humanitarian logistics using hesitant fuzzy AHP. International Journal of the Analytic Hierarchy Process, 8(2), 271–298. doi: 10.13033/ijahp.v8i2.387
- Brunaud, B., Bassett, M. H., Agarwal, A., Wassick, J. M., & Grossmann, I. E. (2018). Efficient formulations for dynamic warehouse location under discrete transportation costs. Computers & Chemical Engineering, 111, 311–323. doi: 10.1016/j.compchemeng.2017.05.011
- Büyüközkan, G., & Uztürk, D. (2017, July). Combined QFD TOPSIS approach with 2-tuple linguistic information for warehouse selection. In 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE) (pp. 1–6). IEEE. doi: 10.1109/FUZZ-IEEE.2017.8015684
- Chan, F. T. S., Kumar, N., & Choy, K. L. (2007). Decision-making approach for the distribution centre location problem in a supply chain network using the fuzzy-based hierarchical concept. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(4), 725–739. doi: 10.1243/09544054JEM526
- Cheng, E. W., Li, H., & Yu, L. (2005). The analytic network process (ANP) approach to location selection: a shopping mall illustration. Construction Innovation, 5(2), 83–98. doi: 10.1108/14714170510815195
- Chou, S. Y., Chang, Y. H., & Shen, C. Y. (2008). A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes. European Journal of Operational Research, 189(1), 132–145. doi: 10.1016/j.ejor.2007.05.006
- Chu, T. C. (2002). Facility location selection using fuzzy TOPSIS under group decisions. International Journal of Uncertainty, Fuzziness and Knowledge-based systems, 10(6), 687–701. doi: 10.1142/S0218488502001739
- Colson, G., & Dorigo, F. (2004). A public warehouses selection support system. European Journal of Operational Research, 153(2), 332–349. doi: 10.1016/S0377-2217(03)00156-5
- Cura, T. (2010). A parallel local search approach to solving the uncapacitated warehouse location problem. Computers & Industrial Engineering, 59(4), 1000–1009. doi: 10.1016/j.cie.2010.09.012
- Demirel, T., Demirel, N. Ç., & Kahraman, C. (2010). Multi-criteria warehouse location selection using Choquet integral. Expert Systems with Applications, 37(5), 3943–3952. doi: 10.1016/j.eswa.2009.11.022
- Deng, H., Yeh, C. H., & Willis, R. J. (2000). Inter-company comparison using modified TOPSIS with objective weights. Computers & Operations Research, 27(10), 963–973. doi: 10.1016/S0305-0548(99)00069-6
- Dey, B., Bairagi, B., Sarkar, B., & Sanyal, S. K. (2013). A hybrid fuzzy technique for the selection of warehouse location in a supply chain under a Utopian environment. International Journal of Management Science and Engineering Management, 8(4), 250–261. doi: 10.1080/17509653.2013.825075
- Dey, B., Bairagi, B., Sarkar, B., & Sanyal, S. K. (2016). Warehouse location selection by fuzzy multi-criteria decision making methodologies based on subjective and objective criteria. International Journal of Management Science and Engineering Management, 11(4), 262–278. doi: 10.1080/17509653.2015.1086964
- Dey, B., Bairagi, B., Sarkar, B., & Sanyal, S. K. (2017). Group heterogeneity in multi member decision making model with an application to warehouse location selection in a supply chain. Computers & Industrial Engineering, 105, 101–122. doi: 10.1016/j.cie.2016.12.025
- Dogan, I. (2012). Analysis of facility location model using Bayesian Networks. Expert Systems with Applications, 39(1), 1092–1104. doi: 10.1016/j.eswa.2011.07.109
- Emeç, Ş., & Akkaya, G. (2018). Stochastic AHP and fuzzy VIKOR approach for warehouse location selection problem. Journal of Enterprise Information Management, 31(6), 950–962. doi: 10.1108/JEIM-12-2016-0195
- Franek, J., & Kashi, K. (2017). Application of hybrid madm methods for performance evaluation in manufacturing. Forum Scientiae Oeconomia, 5(2), 41–54. doi: 10.23762/fso_vol5no2_17_4
- García, J. L., Alvarado, A., Blanco, J., Jiménez, E., Maldonado, A. A., & Cortés, G. (2014). Multi-attribute evaluation and selection of sites for agricultural product warehouses based on an analytic hierarchy process. Computers and Electronics in Agriculture, 100, 60–69. doi: 10.1016/j.compag.2013.10.009
- Ghaderi, A., & Jabalameli, M. S. (2013). Modeling the budget-constrained dynamic uncapacitated facility location–network design problem and solving it via two efficient heuristics: a case study of health care. Mathematical and Computer Modelling, 57(3–4), 382–400. doi: 10.1016/j.mcm.2012.06.017
- Guastaroba, G., & Speranza, M. G. (2014). A heuristic for BILP problems: the single source capacitated facility location problem. European Journal of Operational Research, 238(2), 438–450. doi: 10.1016/j.ejor.2014.04.007
- Hakim, R. T., & Kusumastuti, R. D. (2018). A model to determine relief warehouse location in East Jakarta using the analytic hierarchy process. International Journal of Technology, 9(7), 1405–1414. doi: 10.14716/ijtech.v9i7.1596
- He, J., Feng, C., Hu, D., & Liang, L. (2017). A decision model for emergency warehouse location based on a novel stochastic MCDA method: evidence from China. Mathematical Problems in Engineering, 2017, 7804781. doi: 10.1155/2017/7804781
- Ho, S. C. (2015). An iterated tabu search heuristic for the single source capacitated facility location problem. Applied Soft Computing, 27, 169–178. doi: 10.1016/j.asoc.2014.11.004
- Huang, H. C., & Li, R. (2008). A k-product uncapacitated facility location problem. European Journal of Operational Research, 185(2), 552–562. doi: 10.1016/j.ejor.2007.01.010
- Hung, C. C., & Chen, L. H. (2009, March). A fuzzy TOPSIS decision making model with entropy weight under intuitionistic fuzzy environment. In Proceedings of the International Multiconference of Engineers and Computer Scientists (vol. 1, pp. 13–16). IMECS Hong Kong.
- Hwang, C., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. Berlin, Germany: Springer.
- Jha, M. K., Raut, R. D., Gardas, B. B., & Raut, V. (2018). A sustainable warehouse selection: an interpretive structural modelling approach. International Journal of Procurement Management, 11(2), 201–232. doi: 10.1504/IJPM.2018.090025
- Kabak, M., & Keskin, İ. (2018). Hazardous materials warehouse selection based on GIS and MCDM. Arabian Journal for Science and Engineering, 43(6), 3269–3278. doi: 10.1007/s13369-018-3063-z
- Kelemenis, A., & Askounis, D. (2010). A new TOPSIS-based multi-criteria approach to personnel selection. Expert Systems with Applications, 37(7), 4999–5008. doi: 10.1016/j.eswa.2009.12.013
- Kim, G., Park, C. S., & Yoon, K. P. (1997). Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement. International Journal of Production Economics, 50(1), 23–33. doi: 10.1016/S0925-5273(97)00014-5
- Klose, A., & Görtz, S. (2007). A branch-and-price algorithm for the capacitated facility location problem. European Journal of Operational Research, 179(3), 1109–1125. doi: 10.1016/j.ejor.2005.03.078
- Korpela, J., & Tuominen, M. (1996). A decision aid in warehouse site selection. International Journal of Production Economics, 45(1–3), 169–180. doi: 10.1016/0925-5273(95)00135-2
- Kratica, J., Dugošija, D., & Savić, A. (2014). A new mixed integer linear programming model for the multi level uncapacitated facility location problem. Applied Mathematical Modelling, 38(7–8), 2118–2129. doi: 10.1016/j.apm.2013.10.012
- Kuo, M. S. (2011). Optimal location selection for an international distribution center by using a new hybrid method. Expert Systems with Applications, 38(6), 7208–7221. doi: 10.1016/j.eswa.2010.12.002
- Kutlu Gündoğdu, F., & Kahraman, C. (2019). A novel VIKOR method using spherical fuzzy sets and its application to warehouse site selection. Journal of Intelligent & Fuzzy Systems, 37(1), 1197–1211. doi: 10.3233/JIFS-182651
- Lee, S. M., Green, G. I., & Kim, C. S. (1980). A multicriteria warehouse location model. Academy of Management Proceedings, 1980(1), 317–321. doi: 10.5465/ambpp.1980.4977851
- Li, H., Lv, T., & Li, Y. (2015). The tractor and semitrailer routing problem with many-to-many demand considering carbon dioxide emissions. Transportation Research Part D: Transport and Environment, 34, 68–82. doi: 10.1016/j.trd.2014.10.004
- Li, J., Chu, F., Prins, C., & Zhu, Z. (2014). Lower and upper bounds for a two-stage capacitated facility location problem with handling costs. European Journal of Operational Research, 236(3), 957–967. doi: 10.1016/j.ejor.2013.10.047
- MacCarthy, B. L., & Atthirawong, W. (2003). Factors affecting location decisions in international operations-a Delphi study. International Journal of Operations & Production Management, 23(7), 794–818. doi: 10.1108/01443570310481568
- Melachrinoudis, E., & Min, H. (2000). The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach. European Journal of Operational Research, 123(1), 1–15. doi: 10.1016/S0377-2217(99)00166-6
- Monthatipkul, C. (2016). A non-linear program to find an approximate location of a second warehouse: A case study. Kasetsart Journal of Social Sciences, 37(3), 190–201. doi: 10.1016/j.kjss.2016.08.007
- Nevima, J., & Kiszová, Z. (2017). Modified human development index and its weighted alternative – the case of Visegrad Four plus Austria and Slovenia. Forum Scientiae Oeconomia, 5(2), 102–111. doi: 10.23762/fso_vol5no2_17_8
- Nezhad, A. M., Manzour, H., & Salhi, S. (2013). Lagrangian relaxation heuristics for the uncapacitated single-source multi-product facility location problem. International Journal of Production Economics, 145(2), 713–723. doi: 10.1016/j.ijpe.2013.06.001
- Ocampo, L., & Clark, E. (2015). A sustainable manufacturing strategy decision framework in the context of multi-criteria decision-making. Jordan Journal of Mechanical & Industrial Engineering, 9(3), 177–186.
- Ocampo, L. A. (2019). Applying fuzzy AHP–TOPSIS technique in identifying the content strategy of sustainable manufacturing for food production. Environment, Development and Sustainability, 21(5), 2225–2251. doi: 10.1007/s10668-018-0129-8
- Özcan, T., Çelebi, N., & Esnaf, Ş. (2011). Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem. Expert Systems with Applications, 38(8), 9773–9779. doi: 10.1016/j.eswa.2011.02.022
- Ozsen, L., Coullard, C. R., & Daskin, M. S. (2008). Capacitated warehouse location model with risk pooling. Naval Research Logistics, 55(4), 295–312. doi: 10.1002/nav.20282
- Rahmani, A., & MirHassani, S. A. (2014). A hybrid Firefly-Genetic Algorithm for the capacitated facility location problem. Information Sciences, 283, 70–78. doi: 10.1016/j.ins.2014.06.002
- Rakas, J., Teodorović, D., & Kim, T. (2004). Multi-objective modeling for determining location of undesirable facilities. Transportation Research Part D: Transport and Environment, 9(2), 125–138. doi: 10.1016/j.trd.2003.09.002
- Rao, C., Goh, M., Zhao, Y., & Zheng, J. (2015). Location selection of city logistics centers under sustainability. Transportation Research Part D: Transport and Environment, 36, 29–44. doi: 10.1016/j.trd.2015.02.008
- Rath, S., & Gutjahr, W. J. (2014). A math-heuristic for the warehouse location–routing problem in disaster relief. Computers & Operations Research, 42, 25–39. doi: 10.1016/j.cor.2011.07.016
- Raut, R. D., Narkhede, B. E., Gardas, B. B., & Raut, V. (2017). Multi-criteria decision making approach: a sustainable warehouse location selection problem. International Journal of Management Concepts and Philosophy, 10(3), 260–281. doi: 10.1504/IJMCP.2017.085834
- Resende, M. G., & Werneck, R. F. (2006). A hybrid multi-start heuristic for the uncapacitated facility location problem. European Journal of Operational Research, 174(1), 54–68. doi: 10.1016/j.ejor.2005.02.046
- Roh, S. Y., Jang, H. M., & Han, C. H. (2013). Warehouse location decision factors in humanitarian relief logistics. The Asian Journal of Shipping and Logistics, 29(1), 103–120. doi: 10.1016/j.ajsl.2013.05.006
- Roh, S. Y., Shin, Y. R., & Seo, Y. J. (2018). The pre-positioned warehouse location selection for international humanitarian relief logistics. The Asian Journal of Shipping and Logistics, 34(4), 297–307. doi: 10.1016/j.ajsl.2018.12.003
- Roh, S., Pettit, S., Harris, I., & Beresford, A. (2015). The pre-positioning of warehouses at regional and local levels for a humanitarian relief organisation. International Journal of Production Economics, 170, 616–628. doi: 10.1016/j.ijpe.2015.01.015
- Rosenwein, M. B. (1996). A comparison of heuristics for the problem of batching orders for warehouse selection. International Journal of Production Research, 34(3), 657–664. doi: 10.1080/00207549608904926
- Roszkowska, E. (2011). Multi-criteria decision making models by applying the TOPSIS method to crisp and interval data. Multiple Criteria Decision Making. University of Economics in Katowice, ’10–11, 200–230.
- Roy, B. (1990). The outranking approach and the foundations of ELECTRE methods. In Bana e Costa C.A. (eds). Readings in multiple criteria decision aid (pp. 155–183). Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-75935-2_8
- Roy, B. (1991). The outranking approach and the foundations of ELECTRE methods. Theory and Decision, 31(1), 49–73. doi: 10.1007/BF00134132
- Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill, New York.
- Shih, H. S., Shyur, H. J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7–8), 801–813. doi: 10.1016/j.mcm.2006.03.023
- Shukla, A., Agarwal, P., Rana, R. S., & Purohit, R. (2017). Applications of TOPSIS algorithm on various manufacturing processes: a review. Materials Today: Proceedings, 4(4), 5320–5329. doi: 10.1016/j.matpr.2017.05.042
- Singh, R. K., Chaudhary, N., & Saxena, N. (2018). Selection of warehouse location for a global supply chain: A case study. IIMB Management Review, 30(4), 343–356. doi: 10.1016/j.iimb.2018.08.009
- Stankevičienė, J., & Nikanorova, M. (2020). Eco-innovation as a pillar for sustainable development of circular economy. Business: Theory and Practice, 21(2), 531–544. doi: 10.3846/btp.2020.12963
- Temur, G. T. (2016). A novel multi attribute decision making approach for location decision under high uncertainty. Applied Soft Computing, 40, 674–682. doi: 10.1016/j.asoc.2015.12.027
- Tyagi, R., & Das, C. (1995). Manufacturer and warehouse selection for stable relationships in dynamic whole-saling and location problems. International Journal of Physical Distribution & Logistics Management, 25(6), 54–72. doi: 10.1108/09600039510093276
- Vanichchinchai, A., & Apirakkhit, S. (2018). An identification of warehouse location in Thailand. Asia Pacific Journal of Marketing and Logistics, 30(3), 749–758. doi: 10.1108/APJML-10-2017-0229
- Vavrek, R., Adamisin, P., & Kotulic, R. (2017). Multi-criteria evaluation of municipalities in Slovakia - case study in selected districts. Polish Journal of Management Studies, 16(2), 290–301. doi: 10.17512/pjms.2017.16.2.25
- Vlachopoulou, M., Silleos, G., & Manthou, V. (2001). Geographic information systems in warehouse site selection decisions. International Journal of Production Economics, 71(1–3), 205–212. doi: 10.1016/S0925-5273(00)00119-5
- Wagner, M. R., Bhadury, J., & Peng, S. (2009). Risk management in uncapacitated facility location models with random demands. Computers & Operations Research, 36(4), 1002–1011. doi: 10.1016/j.cor.2007.12.008
- Weber, A. (1909). Ueber den Standort der Industrieni. TuKbingen: J.C.B. Mohr. [English translation: The Theory of the Location of Industries. Chicago: Chicago University Press, 1929].
- Weber, A. (1929) (translated by Carl J. Friedrich from Weber’s 1909 book). Theory of the location of industries. Chicago: The University of Chicago Press.
- Wutthisirisart, P., Sir, M. Y., & Noble, J. S. (2015). The two-warehouse material location selection problem. International Journal of Production Economics, 170, 780–789. doi: 10.1016/j.ijpe.2015.07.008
- Xifeng, T., Ji, Z., & Peng, X. (2013). A multi-objective optimization model for sustainable logistics facility location. Transportation Research Part D: Transport and Environment, 22, 45–48. doi: 10.1016/j.trd.2013.03.003
- Yadav, S. K., Joseph, D., & Jigeesh, N. (2018). A review on industrial applications of TOPSIS approach. International Journal of Services and Operations Management, 30(1), 23–28. doi: 10.1504/IJSOM.2018.091438
- Yap, J. Y. L., Ho, C. C., & Ting, C. -Y. (2019). A systematic review of the applications of multi-criteria decision-making methods in site selection problems. Built Environment Project and Asset Management, 9(4), 548–563. doi: 10.1108/BEPAM-05-2018-0078
- You, M., Xiao, Y., Zhang, S., Yang, P., & Zhou, S. (2019). Optimal mathematical programming for the warehouse location problem with Euclidean distance linearization. Computers & Industrial Engineering, 136, 70–79. doi: 10.1016/j.cie.2019.07.020