References
- Adegbola, P., & Gardebroek, C. (2007). The effect of information sources on technology adoption and modification decisions. Agricultural Economics, 37(1), 55–65. doi: 0.1111/j.1574-0862.2007.00222.x
- Aduda, K., Thomassen, T., Zeiler, W., Labeodan, T., Boxem, G., van der Velden, J., & Dubbeldam, J. W. (2014). The human in the loop: An approach to individualize smart process control. Procedia Environmental Sciences, 22, 302–312. doi: 10.1016/j.proenv.2014.11.029
- Agarwal, R., & Prasad, J. (1998). The antecedents and consequents of user perceptions in information technology adoption. Decision Support Systems, 22(1), 15–29. doi: 10.1016/S0167-9236(97)00006-7
- Alekseev, A. N., Buraeva, E. V., Kletskova, E. V., & Rykhtikova, N. A. (2018). Stages of Formation of Industry 4.0 and the Key Indicators of Its Development. Industry 4.0: Industrial Revolution of the 21st Century, 169, 93–100. doi: 10.1007/978-3-319-94310-7_9
- Alguliyev, R., Imamverdiyev, Y., & Sukhostat, L. (2018). Cyber-physical systems and their security issues. Computers in Industry, 100, 212–223. doi: doi.org/10.1016/j.compind.2018.04.017
- Almada-Lobo, F. (2016). The Industry 4.0 revolution and the future of manufacturing execution systems (MES). Journal of Innovation Management, 3(4), 16–21. doi: 10.24840/2183-0606_003.004_0003
- Arnold, C., Veile, J., & Voigt, K. I. (2018). What drives industry 4.0 adoption? An examination of technological, organizational, and environmental determinants. 27th International Conference on Management of Technology (IAMOT), Birmingham, United Kingdom.
- Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5), 677–688. doi: 10.1016/j.bushor.2017.05.011
- Birchall, D., Chanaron, J. J., Tovstiga, G., & Hillen-brand, C. (2011). Innovation performance measurement: Current practices, issues and management challenges. International Journal of Technology Management, 56(1), 1–20. doi: 10.1504/ijtm.2011.042492
- Blanchard, B. S., Verma, D., & Peterson, E. L. (1995). Maintainability: A key to effective serviceability and maintenance management. New York, United States: Wiley.
- Bleicher, J., & Stanley, H. (2016). Digitization as a catalyst for business model innovation a three-step approach to facilitating economic success. Journal of Business Management, 4(2), 62–71.
- Boh, W. F., Evaristo, R., & Ouderkirk, A. (2014). Balancing breadth and depth of expertise for innovation: A 3M story. Research Policy, 43(2), 349–366. doi: 10.1016/j.respol.2013.10.009
- Bohnsack, R., & Pinkse, J. (2017). Value propositions for disruptive technologies: Reconfiguration tactics in the case of electric vehicles. California Management Review, 59(4), 79–96. doi: 10.1177/0008125617717711
- Borrás, S., & Edquist, C. (2013). The choice of innovation policy instruments. Technological Forecasting and Social Change, 80(8), 1513–1522. doi: 10.1016/j.tech-fore.2013.03.002
- Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 Perspective. International Journal of Information and Communication Engineering, 8(1), 37–44.
- Browne, J., Dubois, D., Rathmill, K., Sethi, S. P., & Stecke, K. E. (1984). Classification of flexible manufacturing systems. The FMS Magazine, 2(2), 114–117.
- Caiazza, R., & Volpe, T. (2017). Innovation and its diffusion: Process, actors and actions. Technology Analysis & Strategic Management, 29(2), 181–189. doi: 10.1080/09537325.2016.1211262
- Castelo-Branco, I., Cruz-Jesus, F., & Oliveira, T. (2019). Assessing Industry 4.0 readiness in manufacturing: Evidence for the European Union. Computers in Industry, 107, 22–32. doi: 10.1016/j.compind.2019.01.007
- Cavdar, S. C., & Aydin, A. D. (2015). An empirical analysis about technological development and innovation indicators. Procedia-Social and Behavioral Sciences, 195, 1486–1495. doi: 10.1016/j.sbspro.2015.06.449
- Chang, V., Ramachandran, M., Yao, Y., Kuo, Y. H., & Li, C. S. (2016). A resiliency framework for an enterprise cloud. International Journal of Information Management: The Journal for Information Professionals, 36(1), 155–166. doi: 10.1016/j.ijinfomgt.2015.09.008
- Chor, K. H. B., Wisdom, J. P., Olin, S. C. S., Hoagwood, K. E., & Horwitz, S. M. (2014). Measures for predictors of innovation adoption. Administration and Policy in Mental Health and Mental Health, 42(5), 545–573. doi: 10.1007/s10488-014-0551-7
- Christensen, C. M., Bartman, T., & van Bever, D. (2016). The hard truth about business model innovation. Retrieved from http://sloanreview.mit.edu/article/the-hardtruth-about-business-model-innovation/
- Crossan, M. M., & Apaydin, M. (2010). A multi-dimensional framework of organizational innovation: A systematic review of the literature. Journal of Management Studies, 47(6), 1154–1191. doi: 10.1111/j.1467-6486.2009.00880.x
- Damanpour, F., & Schneider, M. (2006). Phases of the adoption of innovation in organizations: Effects of environment, organization and top managers 1. British Journal of Management, 17(3), 215–236. doi: 10.1111/j.1467-8551.2006.00498.x
- Danquah, M. (2018). Technology transfer, adoption of technology and the efficiency of nations: Empirical evidence from sub Saharan Africa. Technological Forecasting and Social Change, 131, 175–182. doi: 10.1016/j.techfore.2017.12.007
- Datta, A., Mukherjee, D., & Jessup, L. (2015). Understanding commercialization of technological innovation: Taking stock and moving forward. R&D Management, 45(3), 215–249. doi: 10.1111/radm.12068
- Datta, A., Reed, R., & Jessup, L. (2013). Commercialization of innovations: An overarching framework and research agenda. American Journal of Business, 28(2), 147–191. doi: 10.1108/AJB-08-2012-0048
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and acceptance of information technology. MIS Quarterly, 13(3), 319–340. doi: 10.2307/249008
- De Sousa Jabbour, A. B., Jabbour, C. J., Foropon, C., & Godinho Filho, M. (2018). When titans meet – Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technological Forecasting and Social Change, 132, 18–25. doi: 10.1016/j.tech-fore.2018.01.017
- Dewangan, V., & Godse, M. (2014). Towards a holistic enterprise innovation performance measurement system. Technovation, 34(9), 536–545. doi: 10.1016/j.technovation.2014.04.002
- Dimara, E., & Skuras, D. (2003). Adoption of agricultural innovations as a two-stage partial observability process. Agricultural Economics, 28(3), 187–196. doi: 10.1111/j.1574-0862.2003.tb00137.x
- Dodgson, M., & Hinze, S. (2000). Indicators used to measure the innovation process: Defects and possible remedies. Research Evaluation, 9(2), 101–114. doi: 10.3152/147154400781777368
- Dziallas, M., & Blind, K. (2018). Innovation indicators throughout the innovation process: An extensive literature analysis. Technovation, 80–81, 3–29. doi: 10.1016/j.technovation.2018.05.005
- Edison, H., Bin Ali, N., & Torkar, R. (2013). Towards innovation measurement in the software industry. Journal of Systems and Software, 86(5), 1390–1407. doi: 10.1016/j.jss.2013.01.013
- Egorova, I. E., Gagarin, A. G., Kuznetsov, S. Y., Simonov, A. B., & Velikanov, V. V. (2017). Successful Commercialization of Innovations as a Basis of Development of Modern Human Society. In Perspectives on the use of New Information and Communication Technology (ICT) in the Modern Economy (pp. 1156–1162). Cham, United Kingdom: Springer. doi: 10.1007/978-3-319-90835-9_130
- Espitia-Escuer, M., García-Cebrián, L. I., & Muñoz-Porcar, A. (2014). Location as a competitive advantage for entrepreneurship an empirical application in the Region of Aragon (Spain). International Entrepreneur-ship and Management Journal, 11(1), 133–148. doi: 10.1007/s11365-014-0312-9
- Evanschitzky, H., Eisend, M., Calantone, R. J., & Jiang, Y. (2012). Success factors of product innovation: An updated meta-analysis. Journal of Product Innovation Management, 29, 21–37. doi: 10.1111/j.1540-5885.2012.00964.x
- Ezzi, F., & Jarboui, A. (2016). Does innovation strategy affect financial, social and environmental performance? Journal of Economics, Finance and Administrative Science, 21(40), 14–24. doi: 10.1016/j.jefas.2016.03.001
- Frijns, B., Gilbert, A., Lehnert, T., & Tourani-Rad, A. (2013). Uncertainty avoidance, risk tolerance and corporate takeover decisions. Journal of Banking & Finance, 37(7), 2457–2471. doi: 10.1016/j.jbankfin.2013.02.010
- Gallaud, D., & Torre, A. (2005). Geographical proximity and the diffusion of knowledge. In Rethinking Regional Innovation and Change (pp. 127–146). New York, United States: Springer. doi: 10.1007/0-387-23002-5_7
- Garwood, S. G., Cox, L., Kaplan, V., Wasserman, N., & Sulzer, J. L. (1980). Beauty is only “name” deep: the effect of first-name on ratings of physical attraction. Journal of Applied Social Psychology, 10(5), 431–435. doi:10.1111/j.1559-1816.1980.tb00721.x
- Gault, F. (2018). Defining and measuring innovation in all sectors of the economy. Research Policy, 47(3), 617–622. doi: 10.1016/j.respol.2018.01.007
- Glass, R., Meissner, A., Gebauer, C., Stürmer, S., & Metternich, J. (2018). Identifying the barriers to Industrie 4.0. Procedia CIRP, 72, 985–988. doi: 10.1016/j.procir.2018.03.187
- Gopalakrishnan, S., & Damanpour, F. (1997). A review of innovation research in economics, sociology and technology management. Omega, International Journal of Management Science, 25(1), 15–28. doi: 10.1016/S0305-0483(96)00043-6
- Gorecky, D., Schmitt, M., Loskyll, M., & Zuhlke, D. (2014). Human-machine-interaction in the industry 4.0 era. 2014 12th IEEE International Conference on Industrial Informatics (INDIN). doi: 10.1109/indin.2014.6945523
- Greenhalgh, T., Robert, G., Macfarlane, F., Bate, P., & Kyriakidou, O. (2004). Diffusion of innovations in service organizations: systematic review and recommendations. The Milbank Quarterly, 82(4), 581–629. doi: 10.1111/j.0887-378X.2004.00325.x
- Gülbahar, Y. (2007). Technology planning: A roadmap to successful technology integration in schools. Computers & Education, 49, 943–956. doi: 10.1016/j.compedu.2005.12.002
- Habicht, H., Möslein, K. M., & Reichwald, R. (2012). Open innovation maturity. International Journal of Knowledge-Based Organizations, 2(1), 92–111. doi: 0.1142/S1363919611003696
- Ham, J., Lee, J. N., Kim, D. J., & Choi, B. (2015). Open innovation maturity model for the government: An open system perspective. Proceedings of the 36thInternational Conference on Information Systems, Fort Worth, Texas, United States.
- Hameed, M. A., Counsell, S., & Swift, S. (2012). A conceptual model for the process of IT innovation adoption in organizations. Journal of Engineering and Technology Management, 29(3), 358–390. doi: 10.1016/j.jengtecman.2012.03.007
- Hart, S., Jan Hultink, E., Tzokas, N., & Commandeur, H. R. (2003). Industrial companies’ evaluation criteria in new product development gates. Journal of Product Innovation Management, 20(1), 22–36. doi: 10.1111/1540-5885.201003
- Hassan, H. (2017). Organizational factors affecting cloud computing adoption in small and medium enterprises (SMEs) in service sector. International Conference on Enterprise Information Systems, Barcelona, Spain, 976–981. doi: 10.1016/j.procs.2017.11.126
- Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for Industrie 4.0 scenarios. 2016 49th Hawaii International Conference on System Sciences (HICSS). doi: 10.1109/hicss.2016.488
- Hinnant, C. C., & O’Looney, J. A. (2003). Examining pre-adoption interest in online innovations: An exploratory study of e-service personalization in the public sector. IEEE Transactions on Engineering Management, 50(4), 436–447. doi: 0.1109/TEM.2003.820133
- Hoffman, D. G. (2002). Managing operational risk: 20 organization-wide best practice strategies. New York, United States: John Wiley & Sons.
- Hsu, C. L., & Lin, J. C. C. (2016). Exploring factors affecting the adoption of internet of things services. Journal of Computer Information Systems, 58(1), 49–57. doi: 10.1080/08874417.2016.1186524
- Issa, A., Hatiboglu, B., Bildstein, A., & Bauernhansl, T. (2018). Industrie 4.0 roadmap: Framework for digital transformation based on the concepts of capability maturity and alignment. Procedia CIRP, 72, 973–978.
- Issar, G., & Navon, L. R. (2016). Operational Excellence. In G. Issar, & L. R. Navon (Eds.), Manufacturing Overhead (MOH) and Departmental Expense Control (pp. 91–93). Springer International Publishing.
- Jazdi, N. (2014). Cyber-physical systems in the context of Industry 4.0. 2014 IEEE International Conference on Automation, Quality and Testing, Robotics. doi: 10.1109/aqtr.2014.6857843
- Jeyaraj, A., Rottman, J. W., & Lacity, M. C. (2006). A review of the predictors, linkages, and biases in IT innovation adoption research. Journal of Information Technology, 21, 1–23. doi: 10.1057/palgrave.jit.2000056
- Joachim, V., Spieth, P., & Heidenreich, S. (2018). Active innovation resistance: An empirical study on functional and psychological barriers to innovation adoption in different contexts. Industrial Marketing Management, 71, 95–107. doi: 10.1016/j.indmarman.2017.12.011
- Joia, L. A., Gutman, L. F., & Moreno, V. (2016). Intention of use of home broker systems from the stock market investors’ perspective. The Journal of High Technology Management Research, 27(2), 184–195. doi: 10.1016/j.hitech.2016.10.008
- Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry, final report of the Industrie 4.0 Working Group. Forschungs Union.
- Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408–425. doi: 10.1016/j.psep.2018.05.009
- Kang, H. S., Lee, J. Y., Choi, S. S., Kim, H., Park, J. H., Son, J. Y., Kim, B. H., & Noh, S. D. (2016). Smart manufacturing: Past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 111–128. doi: 10.1007/s40684-016-0015-5
- Kerschner, C., & Ehlers, M. (2016). A framework of attitudes towards technology in theory and practice. Ecological Economics, 126, 139–151. doi: 10.1016/j.ecolecon.2016.02.010
- Kolberg, D., & Zühlke, D. (2015). Lean automation enabled by industry 4.0 technologies. IFAC-PapersOnLine, 48(3), 1870–1875. doi: 10.1016/j.ifacol.2015.06.359
- Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. doi: 10.1016/j.mfglet.2014.12.001
- Lee, J. H., Phaal, R., & Lee, S.-H. (2013). An integrated service-device-technology roadmap for smart city development. Technological Forecasting and Social Change, 80(2), 286–306. doi: 10.1016/j.tech-fore.2012.09.020
- Letia, T., & Kilyen, A. (2018). Using unified enhanced time Petri net models for cyber-physical system development. International Federation of Automatic Control PapersOnLine, 51(2), 248–253. doi: 10.1016/j.ifacol.2018.03.043
- Li, X., Ishii, H., & Masuda, T. (2012). Single machine batch scheduling problem with fuzzy batch size. Computers & Industrial Engineering, 62(3), 688–692. doi: 10.1016/j.cie.2011.12.021
- Liao, Y., Deschamps, F., Loures, E. D. F. R., & Ramos, L. F. P. (2017). Past, present and future of Industry 4.0-a systematic literature review and research agenda proposal. International Journal of Production Research, 55(12), 3609–3629. doi: 10.1080/00207543.2017.1308576
- Lira, V., Tavares, E., & Maciel, P. (2015). An automated approach to dependability evaluation of virtual networks. Computer Networks, 88(9), 89–102. doi: 10.1016/j.comnet.2015.05.016
- Lombardi, P., Giordano, S., Farouh, H., & Yousef, W. (2012). Modelling the smart city performance. Innovation: The European Journal of Social Science Research, 25(2), 137–149. doi: 10.1080/13511610.2012.660325
- Lopez, J., & Rubio, J. E. (2018). Access control for cyber-physical systems interconnected to the cloud. Computer Networks, 134, 46–54. doi: 10.1016/j.comnet.2018.01.037
- Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6, 1–10. doi: 10.1016/j.jii.2017.04.005
- Manral, L. (2010). Demand competition and investment heterogeneity in industries based on systemic technologies: Evidence from the US long-distance telecommunications services industry, 1984–1996. Journal of Evolutionary Economics, 20(5), 765–802. doi: 10.1007/s00191-010-0175-3
- Martínez-Noya, A., & García-Canal, E. (2017). Location, shared suppliers and the innovation performance of R&D outsourcing agreements. Industry and Innovation, 25(3), 308–332. doi: 10.1080/13662716.2017.1329085
- Mathiassen, L., & Munk-Madsen, A. (2007). Formalizations in systems development. Behaviour and Information Technology, 5(2), 145–155. doi: 10.1080/01449298608914507
- Mehrad, D., & Mohammadi, S. (2017). Word of Mouth impact on the adoption of mobile banking in Iran. Telematics and Informatics, 34(7), 1351–1363. doi: https://doi.org/10.1016/j.tele.2016.08.009
- Meyer, A. D., & Goes, J. B. (1988). Organizational assimilation of innovations: A multilevel contextual analysis. Academy of Management Journal, 31(4), 897–923. doi: 10.5465/256344
- Miranda, M. Q., Farias, J. S., De Araújo Schwartz, C., & De Almeida, J. P. (2016). Technology adoption in diffusion of innovations perspective: Introduction of an ERP system in a non-profit organization. RAI Re-vista de Administração e Inovação, 13(1), 48–57. doi: 10.1016/j.rai.2016.02.002
- Miremadi, I., Saboohi, Y., & Jacobsson, S. (2018). Assessing the performance of energy innovation systems: Towards an established set of indicators. Energy Research & Social Science, 40, 159–176. doi: 10.1016/j.erss.2018.01.002
- Molina, E., & Jacob, E. (2018). Software-defined networking in cyber-physical systems: A survey. Computers & Electrical Engineering, 66, 407–419. doi: 10.1016/j.compeleceng.2017.05.013
- Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., & Ueda, K. (2016). Cyber-physical systems in manufacturing. CIRP Annals – Manufacturing Technology, 65(2), 621–641. doi: 10.1016/j.cirp.2016.06.005
- Morrar, R., Arman, H., & Mousa, S. (2017). The fourth industrial revolution (Industry 4.0): A social innovation perspective. Technology Innovation Management Review, 7(11), 12–20. doi: 10.22215/timreview/1117
- Müller, J. M. (2019). Antecedents to digital platform usage in Industry 4.0 by established manufacturers. Sustainability, 11(4), 1121. doi: 10.3390/su11041121
- Müller, J. M., Kiel, D., & Voigt, K. (2018). What drives the implementation of Industry 4.0? The role of opportunities and challenges in the context of sustainability. Sustainability, 10(1), 247. doi:10.3390/su10010247
- O’Hern, M. S., & Rindfleisch, A. (2017). Customer co-creation: A typology and research agenda. In Review of marketing research (pp. 108–130). Routledge.
- Oesterreich, T. D., & Teuteberg, F. (2016). Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in Industry, 83, 121–139. doi: 10.1016/j.compind.2016.09.006
- Organization for Economic Cooperation and Development (OECD). (2005). Oslo Manual: The measurement of scientific and technological activities. Proposed Guidelines for Collecting an Interpreting Technological Innovation Data.
- Oyemomi, O., Liu, S., Neaga, I., Chen, H., & Nakpodia, F. (2019). How cultural impact on knowledge sharing contributes to organizational performance: Using the fsQCA approach. Journal of Business Research, 94, 313–319. doi: 10.1016/j.jbusres.2018.02.027
- Pilke, E. (2004). Flow experiences in information technology use. International Journal of Human-Computer Studies, 61(3), 347–357. doi: 10.1016/j.ijhcs.2004.01.004
- Plsek, P. (2003). Complexity and the adoption of innovation in health care. Accelerating quality improvement in health care: Strategies to accelerate the diffusion of evidence-based innovations. Washington, United States: National Institute for Healthcare Management Foundation and National Committee for Quality in Health Care.
- Prest A. R., & Turvey R. (1966) Cost-Benefit Analysis: A Survey. In Surveys of Economic Theory. London, United Kingdom: Palgrave Macmillan. doi: 10.1007/978-1-349-00210-8_5
- Priyadarshinee, P., Raut, R. D., Jha, M. K., & Kamble, S. S. (2017). A cloud computing adoption in Indian SMEs: Scale development and validation approach. Journal of High Technology Management Research, 28(2), 221–245. doi: 10.1016/j.hitech.2017.10.010
- Rajnai, Z., & Kocsis, I. (2018). Assessing industry 4.0 readiness of enterprises. 2018 IEEE 16th World Symposium on Applied Machine Intelligence and Informatics (SAMI), IEEE.
- Rogers, E. M. (1995). Diffusion of Innovations. Fourth Ed. New York, United States: Free Press.
- Rojko, A. (2017). Industry 4.0 concept: Background and overview. International Journal of Interactive Mobile Technologies, 11(5), 77–90. doi: 10.3991/ijim.v11i5.7072
- Sabherwal, R., & King, W. (1991). Towards a theory of strategic use of information resources: An inductive approach. Information and Management, 20, 191–212. doi: 10.1016/0378-7206(91)90055-7
- Salleh, M., Bahari, M., & Zakaria, N. H. (2017). An overview of software functionality service: A systematic literature review. Procedia Computer Science, 124, 337–344. doi: 10.1016/j.procs.2017.12.163
- Schumpeter, J. A. (1934). Change and the Entrepreneur. Essays of JA Schumpeter, 4(23), 45–91.
- Shamim, S., Cang, S., Yu, H., & Li, Y. (2016). Management approaches for Industry 4.0: A human resource management perspective. 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE.
- Sharma, S. K., Al-Badi, A. H., Govindaluri, S. M., & Al-Kharusi, M. H. (2016). Predicting motivators of cloud computing adoption: A developing country perspective. Computers in Human Behavior, 62, 61–69. doi: 10.1016/j.chb.2016.03.073
- Siderska, J., & Mubarok, K. (2018). Cloud Manufacturing Platform and Architecture Design. Multidisciplinary Aspects of Production Engineering, 1(1), 673–680. doi: 10.2478/mape-2018-0085
- Slater, S. F., & Mohr, J. J. (2006). Successful development and commercialization of technological innovation: Insights based on strategy type. Journal of Product Innovation Management, 23(1), 26–33. doi: 10.1111/j.1540-5885.2005.00178.x
- Solis, B. (2016). The six stages of digital transformation maturity. Retrieved from https://www.prophet.com/2016/04/the--six--stages--of--digital--transformation.
- Song, J. (2014). Understanding the adoption of mobile innovation in China. Computers in Human Behavior, 38, 339–348. doi: 10.1016/j.chb.2014.06.016
- Sosna, M., Trevinyo-Rodriguez, R. N., & Velamuri, S. R. (2010). Business model innovation through trial-and-error learning: The Naturhouse case. Long Range Planning, 43(2), 383–407. doi: 10.1016/j.lrp.2010.02.003
- Stock, T., & Seliger, G. (2016). Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP, 40, 536–541. doi: 10.1016/j.procir.2016.01.129
- Straub, E. T. (2009). Understanding technology adoption: Theory and future directions for informal learning. Review of Educational Research, 79(2), 625–649. doi: 10.3102/0034654308325896
- Sung, T. K. (2018). Industry 4.0: A Korea perspective. Technological Forecasting & Social Change, 132, 40–45. doi: 10.1016/j.techfore.2017.11.005
- Suomala, P. (2004). The life cycle dimension of new product development performance measurement. International Journal of Innovation Management, 8(02), 193–221. doi: 10.1142/S1363919604001039
- Szczerbicki, E. (2008). Smart Systems Integration: Toward overcoming the problem of complexity. Cybernetics and Systems, 39(2), 190–198. doi: 10.1080/01969720701853475
- Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems, 48, 157–169. doi: 10.1016/j.jmsy.2018.01.006
- Terziyan, V., Gryshko, S., & Golovianko, M. (2018). Patented intelligence: Cloning human decision models for Industry 4.0. Journal of Manufacturing Systems, 48, 204–217. doi: 10.1016/j.jmsy.2018.04.019
- Tweedale J. W. (2015). Enhancing the degree of autonomy by creating automated components within a multi-agent system framework. In J. Tweedale, L. Jain, J. Watada, & R. Howlett (Eds.), Knowledge-Based Information Systems in Practice. Smart Innovation, Systems and Technologies. Cham, United Kingdom: Springer. doi: 10.1007/978-3-319-13545-8_15
- van Oorschot, J. A., Hofman, E., & Halman, J. I. (2018). A bibliometric review of the innovation adoption literature. Technological Forecasting and Social Change, 134, 1–21. doi: 10.1016/j.techfore.2018.04.032
- Vogel-Heuser, B., & Hess, D. (2016). Guest editorial Industry 4.0–prerequisites and visions. IEEE Transactions on Automation Science and Engineering, 13(2), 411–413. doi: 10.1109/TASE.2016.2523639
- Wang, B., Zhao, J., Wan, Z., Ma, J., Li, H., & Ma, J. (2016). Lean intelligent production system and value stream practice. 3rd International Conference on Economics and Management (ICEM 2016). doi:10.12783/dtem/icem2016/4106
- Wegner, A., Graham, J., & Ribble, E. (2017). A new approach to cyberphysical security in industry 4.0. In Cybersecurity for Industry 4.0 (pp. 59–72). Cham, United Kingdom: Springer. doi: 10.1007/978-3-319-50660-9_3
- Xu, Z. (2006). A note on linguistic hybrid arithmetic averaging operator in multiple attribute group decision making with linguistic information. Group Decision and Negotiation, 15(6), 593–604. doi: 10.1007/s10726-005-9008-4
- Yigitcanlar, T., Sabatini-Marques, J., da-Costa, E. M., Kamruzzaman, M., & Ioppolo, G. (2019). Stimulating technological innovation through incentives: Perceptions of Australian and Brazilian firms. Technological Forecasting and Social Change, 146, 403–412. doi: 10.1016/j.techfore.2017.05.039
- Zhang, M., & Hartley, J. L. (2018). Guanxi, IT systems, and innovation capability: the moderating role of proactiveness. Journal of Business Research, 90, 75–86. doi: 10.1016/j.jbusres.2018.04.036
- Zhu, K., Dong, S., Xu, S. X., & Kraemer, K. L. (2006). Innovation diffusion in global contexts: Determinants of post-adoption digital transformation of European companies. European Journal of Information Systems, 15(6), 601–616. doi: 10.1057/palgrave.ejis.3000650