Agrawal, K., & Maheshwari, Y. (2016). Predicting financial distress: revisiting the option-based model. South Asian Journal of Global Business Research, 5(2), 268-284. doi: 10.1108/sajgbr-04-2015-0030
Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O., Akinade, O. O., & Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94 164-184. doi: 10.1016/j.eswa.2017.10.040
Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609. doi: 10.1111/j.1540-6261.1968.tb00843.x
Bandyopadhyay, A. (2006). Predicting probability of default of Indian corporate bonds: logistic and Z-score model approaches. The Journal of Risk Finance, 7(3), 255-272.
Brożyna, J., Grzegorz, M., & Pisula, T. (2016). Statistical methods of the bankruptcy prediction in the logistics sector in Poland and Slovakia. Transformations in Business & Economics, 15(1(37)), 80-96.
Chrastinová, Z. (1998). Metódy hodnotenia ekonomickej bonity a predikcie finančnej situácie poľnohospodárskych podnikovMethods of economic creditworthiness evaluation and prediction of financial situation of agricultural companies Bratislava, Slovakia: VUEPP.
Durica, M., Frnda, J., & Svabova, L. (2019). Decision tree based model of business failure prediction for Polish companies. Oeconomia Copernicana 10(3), 453-469. doi: 10.24136/oc.2019.022
Ékes, K. S., & Koloszár, L. (2014). The Efficiency of Bankruptcy Forecast Models in the Hungarian SME Sector. Journal of Competitiveness, 6(2), 56-73. doi: 10.7441/joc.2014.02.05
Fitzpatrick, P. J. (1932). A Comparison of Ratios of Successful Industrial Enterprises with Those of Failed Firm. Certified Public Accountant, 6 727-731.
Gajdka, J., & Stos, D. (1996). The use of discriminant analysis in assessing the financial condition of enterprises. In R. Borowiecki (Ed.), Restructuring in the Process of Transformation and Development of Enterprises Kraków: Wydawnictwo Akademii Ekonomicznej w Krakowie.
Gavurová, B., Janke, F., Packová, M., & Prídavok, M. (2017). Analysis of Impact of Using the Trend Variables on Bankruptcy Prediction Models Performance. Ekonomicky Casopis, 65(4), 370-383.
Gruszczyński, M. (2003). Models of microeconometrics in the analysis and forecasting of the financial risk of enterprises. Zeszyty Polskiej Akademii Nauk 23.
Hadasik, D. (1998). Upadłość przedsiębiorstw w Polsce i metody jej prognozowania [Bankruptcy of enterprises in Poland and methods of its forecasting]. Zeszyty Naukowe. Seria 2, Prace Habilitacyjne, Akademia Ekonomiczna w Poznaniu 153.
Hołda, A. (2001). Forecasting the bankruptcy of an enterprise in the conditions of the Polish economy using the discriminatory function ZH. Rachunkowość, 5 306-310.
Hu, B., Palta, M., & Shao, J. (2006). Properties of R2 statistics for logistic regression. Statistics in Medicine, 25(8), 1383-1395. doi: 10.1002/sim.2300
Hurtošová, J. (2009). Konštrukcia ratingového modelu, nástroja hodnotenia úverovej spôsobilosti podnikuConstruction of the rating model as a tool for assessing the creditworthiness of a company (Dissertation thesis). Bratislava, Slovakia: The University of Economics in Bratislava.
Jakubík, P., & Teplý, P. (2011). The JT Index as an Indicator of Financial Stability of Corporate Sector. Prague Economic Papers, 20(2), 157-176. doi: 10.18267/j.pep.394
Jones, S., Johnstone, D., & Wilson, R. (2016). Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks. Journal of Business Finance & Accounting, 44(1-2), 3-34. doi: 10.1111/jbfa.12218
Kalouda, F., & Vaníček, R. (2013). Alternative bankruptcy models – First results. In O. Deev, V. Kajurová, & J. Krajíček (Eds.), European Financial Systems 2013 – Proceedings of the 10th International Scientific Conference (pp. 164-168). Brno, Czech Republic: Masaryk University.
Karas, M., & Režňáková, M. (2013). Bankruptcy Prediction Model of Industrial Enterprises in the Czech Republic. International Journal of Mathematical Models and Methods in Applied Sciences, 5 519-531.
Karas, M., & Režňáková, M. (2017). Predicting the Bankruptcy of Construction Companies: A CART-Based Model. Engineering Economics, 28(2), 145-154. doi: 10.5755/j01.ee.28.2.16353
Karas, M., & Režňáková. M. (2014). A parametric or non-parametric approach for creating a new bankruptcy prediction model: The Evidence from the Czech Republic. International Journal of Mathematical Models and Methods in Applied Sciences, 8 214-223.
Kliestik, T., Kliestikova, J., Kovacova, M., Svabova, L., Valaskova, K., Vochozka, M., & Olah, J. (2018a). Prediction of financial health of business entities in transition economies New York, United States: Addleton Academic Publishers.
Kliestik, T., Misankova, M., Valaskova, K., & Svabova, L. (2018b). Bankruptcy prevention: new effort to reflect on legal and social changes. Science and Engineering Ethics, 24(2). doi: 10.1007/s11948-017-9912-4
Kliestik, T., Vrbka, J., & Rowland, Z. (2018c). Bankruptcy prediction in Visegrad group countries using multiple discriminant analysis. Equilibrium. Quarterly Journal of Economics and Economic Policy,13 (3), 569-593. doi: 10.24136/eq.2018.028
Kovacova, M., & Kliestik, T. (2017). Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(4), 775-791. doi: 10.24136/eq.v12i4.40
Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques – a review. European Journal of Operational Research, 180(1), 1-28. doi: 10.1016/j.ejor.2006.08.043
Němec, D., & Pavlík, M. (2016). Predicting insolvency risk of the Czech companies. In M. Reiff, & P. Gežík (Eds.), Proceedings of the International Scientific Conference Quantitative Methods in Economics: Multiple Criteria Decision Making XVIII (pp. 258-263). Bratislava, Slovakia: The University of Economics in Bratislava.
Neumaierová, I., & Neumaier, I. (2002). Výkonnost a tržní hodnota firmyEfficiency and market value of the company Prague, Czech Republic: Grada Publishing.
Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1), 109-131. doi: 10.2307/2490395
Pawelek, B., Galuszka, K., Kostrzewska, J., & Kostrzewski, M. (2017). Classification methods in the research on the financial standing of construction enterprises after bankruptcy in Poland. In F. Palumbo, A. Montanari, & M. Vichi (Eds.), Data Science Studies in Classification, Data Analysis, and Knowledge Organization doi: 10.1007/978-3-319-55723-6_3
Pisula, T., Mentel, G., & Brożyna, J. (2013). Predicting Bankruptcy of Companies from the Logistics Sector Operating in the Podkarpacie Region. Modern Management Review, 20(3), 113-134. doi: 10.7862/rz.2013.mmr.33
Pociecha, J., Pawełek, B., Baryła, M., & Augustyn, S. (2014). Statistical Methods of Forecasting Bankruptcy in the Changing Economic Situation Kraków, Poland: Fundacja Uniwersytetu Ekonomicznego w Krakowie.
Pociecha, J., Pawelek, B., Baryla, M., & Augustyn, S. (2018). Classification models as tools of bankruptcy prediction - Polish experience. In W. Gaul, M. Vichi, & C. Weihs (Eds.), Studies in Classification, Data Analysis, and Knowledge Organization doi: 10.1007/978-3-319-55708-3_18
Prusak, B. (2018). Review of research into enterprise bankruptcy prediction in selected central and eastern European countries. International Journal of Financial Studies, 6(3), 60. doi: 10.3390/ijfs6030060
Režňáková, M., & Karas, M. (2014). Identifying bankruptcy prediction factors in various environments: A contribution to the discussion on the transferability of bankruptcy models. International Journal of Mathematical Models and Methods in Applied Sciences, 8(1), 69-74.
Rybárová, D., Braunová, M., & Jantošová, L. (2016). Analysis of the Construction Industry in the Slovak Republic by Bankruptcy Model. Procedia – Social and Behavioral Sciences, 230 298-306. doi: 10.1016/j.sbspro.2016.09.038
Tokarski, A. (2018). The phenomenon of bankruptcy of enterprises in the polish economy in the years 2008-2015. In E. Lotko, U. K. Zawadzka-Pak, & M. Radvan (Eds.), Optimization of organization and legal solutions concerning public revenues and expenditures in public interest (Conference proceedings) (pp. 403-420). doi: 10.15290/oolscprepi.2018.30
Virág, M., & Kristóf, T. (2005). Neural Networks in Bankruptcy Prediction - A Comparative Study on the Basis of the First Hungarian Bankruptcy Model. Acta Oeconomica, 55(4), 403-426. doi: 10.1556/aoecon.55.2005.4.2
Virág, M., & Nyitrai, T. (2014). Is there a trade-off between the predictive power and the interpretability of bankruptcy models? The case of the first Hungarian bankruptcy prediction model. Acta Oeconomica, 64(4), 419-440. doi: 10.1556/aoecon.64.2014.4.2
Vochozka, M., Straková, J., & Váchal, J. (2015). Model to Predict Survival of Transportation and Shipping Companies. Naše More, 62(3), 109-113. doi: 10.17818/nm/2015/si4
Waqas, H., & Md-Rus, R. (2018). Predicting financial distress: Applicability of O-score model for Pakistani firms. Business and Economic Horizons, 14(2), 389-401. doi: 10.15208/beh.2018.28
Wyrobek, J., & Kluza, K. (2018). Efficiency of gradient boosting decision trees technique in Polish companies’ bankruptcy prediction. In L. Borzemski, J. Swiątek, & Z. Wilimowska (Eds.), Advances in Intelligent Systems and Computing Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018 (pp. 24-35). doi: 10.1007/978-3-319-99993-7_3
Zmijewski, M. E. (1984). Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research, 22 59-82. doi: 10.2307/2490859