References
- Alvarez-Diaz, M., D’Hombres, B., Ghisetti, C., & Pontarollo, N. (2020). Analysing domestic tourism flows at the provincial level in Spain by using spatial gravity models. International Journal of Tourism Research, 22(4), 403–415.
https://doi.org/10.1002/jtr.2344 - Cao, X., Qu, Z., Liu, Y., & Hu, J. (2021). How the destination short video affects the customers’ attitude: The role of narrative transportation. Journal of Retailing and Consumer Services, 62(2021), 102672.
https://doi.org/10.1016/j.jretconser.2021.102672 - Ding, Z., Ma, F., & Zhang, G. (2022). Spatial differences and influencing factors of urban network attention by Douyin fans in China. Geographical Research, 41(9), 2548–2567.
https://doi.org/10.11821/dlyj020220145 - Duan, Z., Sun, H., Xie, S., & Zhang, T. (2020, April 23–25). An analysis of the spatio-temporal characteristics of hotel’s network attention: Taking Xi’an three-star and above hotels as an example [Conference paper]. 7th International Conference on Energy Materials and Environment Engineering, Zhangjiajie, China.
https://doi.org/10.1051/e3sconf/202126103063 - Fang, X., Xie, C., Yu, J., Huang, S., & Zhang, J. (2023). How do short-form travel videos trigger travel inspiration? Identifying and validating the driving factors. Tourism Management Perspectives, 47(2023), 101128.
https://doi.org/10.1016/j.tmp.2023.101128 - Feng, X. (2022). 中国民宿网络关注时空特征及影响因素研究 [A study on the spatiotemporal characteristics and influencing factors of online attention to homestays in China]. World Geography Research, 31(1), 154–165.
https://doi.org/10.3969/j.issn.1004-9479.2022.01.2020161 - Jiang, J., Hong, Y., Li, W., & Li, D. (2022). A study on the impact of official promotion short videos on tourists’ destination decision-making in the post-epidemic era. Frontiers in Psychology, 13(2022), 1–12.
https://doi.org/10.3389/fpsyg.2022.1015869 - Jiao, S., Li, M., Tian, F., Wu, R., & Yang, Q. (2022). 中国红色旅游经典景区网络关注度分布格局及驱动机制 [The distribution pattern and driving mechanism of online attention to classic red tourism scenic spots in China]. Economic Geography, 42(1), 211–220.
https://doi.org/10.15957/j.cnki.jjdl.2022.01.025 - Knight, S. R. (2014). Social media and online attention as an early measure of the impact of research in solid organ transplantation. Transplantation, 98(5), 490–496.
https://doi.org/10.1097/TP.0000000000000307 - Krisjanous, J. (2016). An exploratory multimodal discourse analysis of dark tourism websites: Communicating issues around contested sites. Journal of Destination Marketing & Management, 5(4), 341–350.
https://doi.org/10.1016/j.jdmm.2016.07.005 - Lai, J. N. (2022). The development path of red tourism classic scenic spots: From the perspective of the evolution of network attention in time and space. Social Scientist, 1(8), 44–51.
- Li, L., Tao, Z.-M., Lai, Z.-C., Li, T., & Ju, S.-I. (2021). Analysis of the Internet attention and tourism flow network structure of red tourism resources in Long March National Cultural Park. Journal of Natural Resources, 36(7), 1811–1824.
https://doi.org/10.31497/zrzyxb.20210713 - Li, M.-C., Wang, C.–X., Xue, M.-Y., Wang, R.-I., & Zhou, H.-M. (2021). Analysis of spatio-temporal evolution characteristics and influence factors of the network attention degree of novel coronavirus pneumonia epidemic. Human Geography, 36(2), 110–119.
http://rwdl.xisu.edu.cn/EN/abstract/abstract12342.shtml - Li, Y., & Zhang, X. (2018). 旅游安全网络关注度空间差异及影响因素——基于地理探测器方法的研究 [Spatial differences and influencing factors of tourism safety network attention: A study based on geographic detector method]. Journal of Huaqiao University, 2018(4), 15–25.
https://doi.org/10.16067/j.cnki.35-1049/c.2018.04.002 - Liang, X., & Lijun, M. (2023). 我国国内旅游流循环空间格局及形成机理——基于网络关注度的分析 [Spatial pattern and formation mechanism of domestic tourism circulation in China: An analysis based on network attention]. Tourism Tribune, 38(9), 104–117.
https://doi.org/10.19765/j.cnki.1002-5006.2023.00.017 - Liu, Y. (2016). 张家界与韶山景区游客满意度的影响因素比较研究 [Comparative study on the factors affecting tourist satisfaction in Zhangjiajie and Shaoshan scenic areas]. Economic Geography, 36(10), 216–221.
https://doi.org/10.15957/j.cnki.jjdl.2016.10.030 - Liu, Z., Zhao, R., & Ding, Z. (2022). 基于景区抖音粉丝关注度的长江经济带旅游经济空间结构及其影响因素分析 [Analysis of the spatial structure of tourism economy in the Yangtze River Economic Belt and its influencing factors based on the attention of Douyin fans of scenic spots]. Journal of Central China Normal University, 56(5), 891–902.
https://doi.org/10.19603/j.cnki.1000-1190.2022.05.019 - Lu, L., Hongyan, F., Jiuquan, L., & Baorong, L. (2022a). 网红城市网络关注度时空动态演变及影响因素研究——以西安市为例 [Research on the spatiotemporal dynamic evolution and influencing factors of online attention of Internet celebrity cities: A case study of Xi’an]. Scientia Geographica, 42(9), 1566–1576.
https://doi.org/10.13249/j.cnki.sgs.2022.09.006 - Lu, L., Li, L., Li, C., Huang, C., & Su, Y. (2022b). 省域国家森林公园网络关注度与旅游吸引力动态耦合协调关系 [Dynamic coupling coordination relationship between network attention and tourism attraction of provincial national forest parks]. Economic Geography, 42(3), 150–159.
https://doi.org/10.15957/j.cnki.jjdl.2022.03.016 - Luo, W., Wang, F., & Ding, Z. (2023). 中国红色景区抖音网络关注度的空间差异及其影响因素 [Spatial differences in the attention paid to Chinese red scenic spots on Douyin and its influencing factors]. Economic Geography, 43(3), 198–210.
https://doi.org/10.15957/j.cnki.jjdl.2023.03.021 - Mao, Z., Guan, Z., & Gu, X. (2023). How do level of novelty and camera angle of tourism-themed short videos on Douyin influence potential travelers’ behavioral intentions?. Cyberpsychology, Behavior, and Social Networking, 26(9), 672–678.
https://doi.org/10.1089/CYBER.2022.0108 - Muchapondwa, E., & Stage, J. (2013). The economic impacts of tourism in Botswana, Namibia and South Africa: Is poverty subsiding?. Natural Resources Forum, 37(2), 80–89.
https://doi.org/10.1111/1477-8947.12007 - Ren, T., You, M., & Zhang, Z. (2021). (2020). 东京奥运会中国居民网络关注度的时空特征变化及其影响因素 [The spatiotemporal characteristics of Chinese residents’ online attention to the 2020 Tokyo Olympics and its influencing factors]. Journal of Capital Institute of Physical Education, 33(6), 595–603.
https://doi.org/10.14036/j.cnki.cn11-4513.2021.06.003 - Shu, B., Wu, W., & Li, M. (2023). “Preview to positive”: Field visit intention as consequences of presence in tourism short videos: The role of optimism bias. Asia Pacific Journal of Tourism Research, 28(7), 763–776.
https://doi.org/10.1080/10941665.2023.2264971 - Shu, L., Zhang, K., & Wang, X. Q. (2020). Network attention of China’s sports tourism based on Baidu index. Journal of Beijing Sport University, 43(6), 110–122.
- Su, H., & Kang, W. (2022). 红色旅游经典景区网络关注度时空特征及影响因素研究 [Research on the spatiotemporal characteristics and influencing factors of online attention to classic red tourism scenic spots]. Journal of Arid Land Resources and Environment, 36(5), 200–208.
https://doi.org/10.13448/j.cnki.jalre.2022.139 - Tang, H., & Xu, C.-X. (2021). Spatio-temporal evolution and influencing factors of Chinese red tourism classic scenic spots network attention. Journal of Natural Resources, 36(7), 1792–1819.
https://doi.org/10.31497/zrzyxb.20210712 - Wang, C., Lu, C.–B., Ba, D.–X., Ma, B.–B., & Qin, Z.–Q. (2022). Spatio-temporal evolution and influencing factors of network attention of representative ski resorts in China. Journal of Natural Resources, 37(9), 2367–2368.
https://doi.org/10.31497/zrzyxb.20220912 - Wang, J., & Wu, C. (2017). Geodetector: Principle and prospective. Acta Geographica Sincia, 72(1), 116–134.
https://doi.org/10.11821/dlxb201701010 - Xu, J., & Qiao, G. (2022). Exploring factors influencing travel information-seeking intention on short video platforms. Current Issues in Tourism, 26(24), 3985–4000.
https://doi.org/10.1080/13683500.2022.2154197 - Xue, C.–H., & Bai, Y.–P. (2023). Spatiotemporal characteristics and factors influencing urban tourism market network in Western China: Taking Chengdu as an example. Sustainability, 15(10), 1–21.
https://doi.org/10.3390/su15108135 - Yan, J., Zhao, Y., Cui, P., & Guo, X. (2021). 中国赴俄旅游网络关注度时空差异及成因分析 [Analysis on the temporal and spatial differences and causes of online attention to Chinese tourists traveling to Russia]. World Geography Research, 30(6), 1175–1198.
https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjQwNzA0Eg9zamRseWoyMDIxMDYwMDYaCGtjdDhrZWJi - Yang, Y., Shao, Z., Zhao, Q., Pan, J., Hu, Y., & Mei, Q. (2022). 基于厦门港的海上交通事故地理空间分布及风险预测研究 [Study on geographic spatial distribution and risk prediction of maritime traffic accidents based on Xiamen Port]. Journal of Geo-Information Science, 24(9), 1676–1687.
https://doi.org/10.12082/dqxxkx.2022.210455 - Yao, J., & Liu, Y. (2020). Study on spatial-temporal characteristics and influencing factors of network attention: The case of Guilin, China. Journal of Physics: Conference Series, 1646(2020), 1–7.
https://iopscience.iop.org/article/10.1088/1742-6596/1646/1/012074/pdf - Zang, H., & Wang, C. (2020). Analysis on the characteristics of hotel network attention based on Baidu index – Take New Century Grand Hotel as an example. International Journal of Frontiers in Sociology, 2(9), 99–106.
https://doi.org/10.25236/IJFS.2020.020914 - Zeng, L. H., & Li, J. H. (2019). The thriving of Douyin tourism short videos from the perspective of interactive ceremony chain. Media, 2019(16), 44–46.
- Zhang, B., & Wu, L. (2022). 网络关注度视角下研学旅行发展现状与影响因素 [Research on the development status and influencing factors of study tours from the perspective of network attention]. Regional Research and Development, 41(2), 84–88.
https://doi.org/10.3969/j.Issn.1003-2363.2022.02.014 - Zhang, H., Shi, T., & Bao, H. (2019). 中国5A级旅游景区空间结构特征研究 [Research on the spatial structure characteristics of China’s 5A-level tourist attractions]. Journal of Huaqiao University, 2019(4), 80–90.
https://doi.org/10.16067/j.cnki.35-1049/c.2019.04.010 - Zhang, H. Q., & Chen, N. Y. (2008). An analysis of competitive state of red tourism cities: A case study of top six red tourism cities. Tourism Tribune, 23(11), 26–29.
- Zhang, M., & Huang, L. Y. (2021). 负面网络关注度对旅游业发展的影响——基于旅游需求的空间关联分析 [Tourism development and public attention to negative online information: Based on the spatial correlations of tourism demand]. Tourism Tribune, 36(7), 81–91.
https://doi.org/10.19765/j.cnki.1002-5006.2021.07.011 - Zhang, Y., Jin, X., Wang, Y., Liu, R., & Jing, Y. (2022). Characterizing spatial-temporal variation of cultural tourism Internet attention in Western Triangle Economic Zone, China. Land, 11(12), 2221–2221.
https://doi.org/10.3390/LAND11122221 - Zhang, Y., Ren, Y., & Liang, L. (2023). Spatio-temporal differences and influencing factors of network attention to ice-snow tourism in China: Empirical data based on Baidu index 2011–2020. World Regional Studies, 1(1), 1–15.
https://kns.cnki.net/kcms/detail//31.1626.p.20230210.1456.008.html - Zhao, C., Shen, H., & Zhang, Y. (2022). The study on the impact of short video tourism Vloggers at social media platform on online sharing intention. Frontiers in Psychology, 13(2022), 905002.
https://doi.org/10.3389/FPSYG.2022.905002 - Zhao, R., Zhao, H., & Ding, Z. W. (2022). Analysis on spatial pattern and influencing factors of A-level desert scenic spots in China based on network attention. Journal of Desert Research, 42(5), 101–113.
http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2022.00022