Have a personal or library account? Click to login
Numerical approximation in the application of Risk Parity with Conditional Value at Risk in case of mixed portfolios Cover

Numerical approximation in the application of Risk Parity with Conditional Value at Risk in case of mixed portfolios

By: Denis Veliu  
Open Access
|Oct 2023

References

  1. Acerbi C., Tasche D. (2002). On the coherence of expected shortfall. Journal of Banking & Finance 26 1487.150,
  2. Artzner P., Delbaen F. (1999). Coherent measures of risk. Journal of Mathematical Finance 9:203-228.
  3. Andersson F., Mausser H., Uryasev S. (2000) Credit Risk Optimization with Conditional Value at Risk Criterion. Journal of Mathematical Programming.
  4. Bacon C.R. (2008), Practical Portfolio Performance Measurement and Attribution, vol. 546, Wiley,
  5. Bertsimas D., Lauprete G.,Samarov A.,(2004). Shortfall as a risk measure: properties and optimization. Journal of Economic Dynamics and Control, 28, 7, 1353-1381.
  6. Bera A.K., Park S.Y. (2004). Optimal portfolio diversification using maximum entropy. Working Paper.
  7. Black F., Litterman R., (1990). Asset Allocation: Combining Investors Views with Market Equilibrium Fixed Income Research, Goldman, Sachs & Company,
  8. Biglova A., Ortobelli S., Rachev S.T., Stoyanov S. (2004). Different Approaches to Risk Estimation in Portfolio Theory. Journal of Portfolio Management 31. 103-112.
  9. Caporin M., Lisi F., Janin M., (June 2012). A survey on Four Families of Performance Measures. Working papers series.
  10. Colucci S., (2013). A quick introduction to quantitative models that discard estimation of expected returns for portfolio construction. Working Paper.
  11. Dowd K., (2000). Adjusting for Risk: An Improved Sharpe Ratio., International Review of Economics and Finance 9: p.209-222.
  12. Fama E.(1965), The behavior of Stock Market Prices, Journal of Business 38, 34-105.
  13. Konno H., Yamazaki H. (1991). Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market., Management Science 37, 519-531
  14. McNeil A.J., Frey R. (2000). Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach. Journal of Empirical Finance 7,271-300,
  15. Maillard S., Roncalli T., Teiletche J. (2009), On the properties of equally weighted risk contributions portfolios. Journal of Portfolio Management
  16. Maillard S., Roncalli T., Teiletche J. (2012), Managing Risk Exposures using Risk Budgeting Approach. Working Paper.
  17. Markowitz H.M. (1952), Portfolio selection. Journal of Finance, 7:77. 91,.
  18. Markowitz H., (1987). Mean-Variance analysis in portfolio choice and capital markets, Basil Blackwell
  19. Merton R.C. (1980) On estimating the expected return on the market”, Journal of Financial Economics, 8(4):323. 361.
  20. Qian E., (2005). Risk Parity Portfolios. Pan Agora Asset Management.
  21. Risk Metrics (1996). Technical Document. Morgan Guaranty Trust Company of New York,. Rockfellar R.T., Uryasev S. (2000). “Optimization of Conditional Value ar Risk”, The Journal of Risk.
  22. Sharpe W. (1966). Mutual Fund Performance., Journal of Business 39: 119-138.
  23. Stefanovits D. (2010).Equal Contributions to Risk and Portfolio Construction. Master Thesis, ETH Zurich, 33,
  24. Tasche D. (2000), Conditional expectation as quantile derivative. Risk Contributions and Performance Measurement. Preprint, Department of Mathematics, TU-Munchen,
DOI: https://doi.org/10.2478/ejels-2023-0013 | Journal eISSN: 2519-1284 | Journal ISSN: 2520-0429
Language: English
Page range: 22 - 34
Published on: Oct 18, 2023
Published by: International Institute for Private, Commercial and Competition Law
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Denis Veliu, published by International Institute for Private, Commercial and Competition Law
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.