Have a personal or library account? Click to login
Preliminary Study of Trace Elements in Wild Macrofungi From Altos De Cantillana, Central Chile Cover

Preliminary Study of Trace Elements in Wild Macrofungi From Altos De Cantillana, Central Chile

Open Access
|Oct 2025

References

  1. Ouzouni PK, Petridis D, Koller W, Riganakos KA. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem. 2009;115(4):1575-80. DOI: 10.1016/j.foodchem.2009.02.014.
  2. Kalač P. Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000-2009. Food Chem. 2010;122(1):2-15. DOI: 10.1016/j.foodchem.2010.02.045.
  3. Li T, Wang Y, Zhang J, Zhao Y, Liu H. Trace element content of boletus tomentipes mushroom collected from Yunnan, China. Food Chem. 2011;127(4):1828-30. DOI: 10.1016/j.foodchem.2011.02.012.
  4. Racz L, Papp L, Prokai B, Kovács Z. Trace element determination in cultivated mushrooms: an investigation of manganese, nickel, and cadmium intake in cultivated mushrooms using ICP atomic emission. Microchem J. 1996;54(4):444-51. DOI: 10.1006/mchj.1996.0121.
  5. Barros L, Baptista P, Correia DM, Casal S, Oliveira B, Ferreira ICFR. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem. 2007;105:140-5. DOI: 10.1016/j.foodchem.2007.03.052.
  6. Pedneault K, Angers P, Gosselin A, Tweddell RJ. Fatty acid profiles of polar and neutral lipids of ten species of higher basidiomycetes indigenous to eastern Canada. Mycol Res. 2008;112:1428-34. DOI: 10.1016/j.mycres.2008.06.026.
  7. Yilmaz N, Solmaz M, Turkekul I, Elmastas M. Fatty acid composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chem. 2006;99:168-74. DOI: 10.1016/j.foodchem.2005.08.017.
  8. Turkekul I, Elmastas M, Tüzen M. Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chem. 2004;84(3):389-92. DOI: 10.1016/S0308-8146(03)00245-0.
  9. Sesli E, Tuzen M, Soylak M. Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. J Hazard Mater. 2008;160(2):462-7. DOI: 10.1016/j.jhazmat.2008.03.020.
  10. Fu HY, Shieh DE, Ho CT. Antioxidant and free radical scavenging activities of edible mushrooms. J Food Lipids. 2002;9(1):35-43. DOI: 10.1111/j.1745-4522.2002.tb00206.x.
  11. Lee IK, Kim YS, Jang YW, Jung JY, Yun BS. New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus. Bioorg Med Chem Lett. 2007;17(24):6678-81. DOI: 10.1016/j.bmcl.2007.10.072.
  12. García MA, Alonso J, Melgar MJ. Lead in edible mushrooms levels and bioaccumulation factors. J Hazard Mater. 2009;167(1-3):777-83. DOI: 10.1016/j.jhazmat.2009.01.058.
  13. Aloupi M, Koutrotsios G, Koulousaris M, Kalogeropoulos N. Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotox Environ Safety. 2012;78:184-94. DOI: 10.1016/j.ecoenv.2011.11.018.
  14. Kojta AK, Jarzyńska G, Falandysz J. Mineral composition and heavy metal accumulation capacity of Bay Bolete (Xerocomusbadius) fruiting bodies collected near a former gold and copper mining area. J Geochem Explor. 2012;121:76-82. DOI: 10.1016/j.gexplo.2012.08.004.
  15. Drewnowska M, Falandysz J. Investigation on mineral composition and accumulation by popular edible mushroom common chanterelle (Cantharellus cibarius). Ecotox Environ Safety. 2015;113:9-17. DOI: 10.1016/j.ecoenv.2014.11.028.
  16. Borovička J, Řanda Z, Jelínek E, Kotrba P, Dunn CE. Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol Res. 2007;111:1339-44. DOI: 10.1016/j.mycres.2007.08.015.
  17. Braeuer S, Goessler W, Kameník J, Konvalinková T, Žigová A, Borovička J. Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus). Food Chem. 2018;242:225-31. DOI: 10.1016/j.foodchem.2017.09.038. .
  18. Braeuer S, Borovička J, Kameník J, Prall E, Stijve T, Goessler W. Is arsenic responsible for the toxicity of the hyperaccumulating mushroom Sarcosphaera coronaria? Sci Total Environ. 2020;736:139524. DOI: 10.1016/j.scitotenv.2020.139524 .
  19. Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil. 2013;362:319-34. DOI: 10.1007/s11104-012-1287-3.
  20. Borovička J, Braeuer S, Sácký J, Kameník J, Goessler W, Trubač J, et al. Speciation analysis of elements accumulated in Cystoderma carcharias from clean and smelter-polluted sites. Sci Total Environ. 2019;648:1570-81. DOI: 10.1016/j.scitotenv.2018.08.202.
  21. Kalač P, Svoboda L, Havličková B. Contents of cadmium and mercury in edible mushrooms, review. J Appl Biomed. 2004;2:15-20. DOI: 10.1016/j.foodchem.2005.03.012.
  22. Rashid M, Rahman M, Correll R, Naidu R. Arsenic and other elemental concentrations in mushrooms from Bangladesh: health risks. Int J Environ Res Public Health. 2018;15(5):919-24. DOI: 10.3390/ijerph15050919.
  23. Stijve T, Vellinga EC, Herrmann A. Arsenic accumulation in some higher fungi. Persoonia: Molecular Phylogeny and Evolution of Fungi. Rijksherbarium, Leiden. 1990;14(2):161-66. Available from: https://repository.naturalis.nl/pub/531714/PERS1990014002003.pdf.
  24. Stijve T, Bourqui B. Arsenic in edible mushrooms. Deutsche Lebensmittel-Rundschau. Germany. 1991;87:307-10.
  25. Byrne AR, Tusek-Znidaric M. Arsenic accumulation in the mushroom Laccaria amethystina. Chemosphere. 1983;12(7-8):1113-7. DOI: 10.1016/0045-6535(83)90265-5.
  26. Qin K, Li J, Yang W, Wang Z, Zhang H. Role of minerals in mushroom residue on its adsorption capability to Cd(II) from aqueous solution. Chemosphere. 2023;324:138290. DOI: 10.1016/j.chemosphere.2023.138290.
  27. Qu J, Li Y, Song T, Huang S, Wei Y, Liu X, et al. Comparison of the adsorption characteristics and mechanism of Pb onto four adsorbents derived from edible fungi spent substrate. Ecol Eng. 2020;142:105639. DOI: 10.1016/j.ecoleng.2019.105639.
  28. Ferraro V, Venturella G, Pecoraro L, Gao W, Gargano ML. Cultivated mushrooms: Importance of a multipurpose crop, with special focus on Italian fungiculture. Plant Biosyst. 2022;156:130-42. DOI: 10.1080/11263504.2020.1837283.
  29. Šnirc M, Janco I, Hauptvogl M, Jakabová S, Demková L, Árvay J. Risk assessment of the wild edible leccinum mushrooms consumption according to the total mercury content. J Fungi. 2023;9:287. DOI: 10.3390/jof9030287.
  30. Kumar P, Kumar V, Eid EM, Al-Huqail AA, Adelodun B, Fayssal SA, et al. Spatial assessment of potentially toxic elements (PTE) concentration in Agaricus bisporus mushroom collected from local vegetable markets of Uttarakhand State. India J Fungi. 2022;8:452. DOI: 10.3390/jof8050452.
  31. Synytsya A, Míčková K, Jablonský I, Spěváček J, Erban V, Kováříková E, et al. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: structure and potential prebiotic activity. Carbohydr Polym. 2009;76:548-56. DOI: 10.1016/j.carbpol.2008.11.021.
  32. Villares A, Laura MV, Guillamón E. Structural features and healthy properties of polysaccharides occurring in mushrooms. Agriculture. 2012;425-71. DOI: 10.3390/agriculture2040452.
  33. Shi D, Yin C, Feng X, Zhou R, Fan X, Qiao Y, et al. Effect of ultrasound and cellulase pre-treatment on the water distribution, physical properties, and nutritional components of Lentinula edodes chips. Food Bioprocess Technol. 2020;13:625-36. DOI: 10.1007/s11947-020-02422-z.
  34. Rao Z, Dong Y, Zheng X, Tang K, Liu J. Extraction, purification, bioactivities and prospect of lentinan: A review. Biocatal Agric Biotechnol. 2021;37:102163. DOI: 10.1016/j.bcab.2021.102163.
  35. Elhusseiny S, El-Mahdy T, Awad M, Elleboudy N, Farag M, Yassein M, et al. Proteome analysis and in vitro antiviral, anticancer and antioxidant capacities of the aqueous extracts of Lentinula edodes and Pleurotus ostreatus edible mushrooms. Molecules. 2021;26:4623. DOI: 10.3390/molecules26154623.
  36. Yu Q, Guo M, Zhang B, Wu H, Zhang YL, Zhang LF, et al. Analysis of nutritional composition in 23 kinds of edible fungi. J Food Qual. 2020;1-9. DOI: 10.1155/2020/8821315.
  37. Zhang Y, Wang D, Chen Y, Liu T, Zhang S, Fan H, et al. Healthy function and high valued utilization of edible fungi. Food Sci Hum Wellness. 2021;10:408-20. DOI: 10.1016/j.fshw.2021.04.003.
  38. Yadav D, Negi P. Bioactive components of mushrooms: Processing effects and health benefits. Food Res Int. 2021;148:110599. DOI: 10.1016/j.foodres.2021.110599.
  39. Baldrian P. Interactions of heavy metals with white-rot fungi. Enzyme Microbial Technol. 2003; 32:78-91. DOI: 10.1016/S0141-0229(02)00245-4.
  40. Gadd G.M. Tansley Review No. 47 Interactions of fungi with toxic metals. New Phytol. 1993;124: 25-60. Available from: https://www.jstor.org/stable/2558069.
  41. Gibson-Carpintero S, Ocampo-Melgar A, Venegas-Gonzalez A. Diversity and growth patterns of woody species in the Mediterranean Coastal range of Chile: A case study in Altos de Cantillana. New Zealand J Forest Sci. 2024;54:7. DOI: 10.33494/nzjfs542024x318x.
  42. Román DA, Pizarro AI, Rivera L, Torres C, Ávila J, Cortés P, et al. Urinary excretion of platinum, arsenic and selenium of cancer patients from the Antofagasta region in Chile treated with platinum-based drugs. BMC Research Notes. 2012;5:1-12. DOI: 10.1186/1756-0500-5-207.
  43. Salinas A, Triviño JJ, Alvarez-Lueje A, Pizarro I, Segura R, Arancibia V. Anodic stripping voltammetry of arsenic determination with edible mushroom-nafion-modified glassy carbon electrode. Talanta. 2024:126391. DOI: 10.1016/j.talanta.2024.126391.
  44. Świsłowski P, Rajfur M. Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecol Chem Eng S. 2018;25(4):557-68. DOI: 10.1515/eces-2018-0037.
  45. Hites RA. Correcting for censored environmental measurements. Environ Sci Technol. 2019;53:11059-60. DOI: 10.1021/acs.est.9b05042.
  46. Svoboda L, Zimmermannová K, Kalač P. Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emission area of a copper smelter and a mercury smelter. Sci Total Environ. 2000;246:61-7. DOI: 10.1016/S0048-9697(99)00411-8.
  47. Baldrian P, Gabriel J, Čurdová E, Suchánek M, Rychlovský P. Heavy and trace metals in wood‐inhabiting fungi Fomitopsis pinicola, Ganoderma applanatum, Piptoporus betulinus and Stereum hirsutum from medium polluted sites in Czech Republic. Toxicol Environ Chem. 1999;71:475-83. DOI: 10.1080/02772249909358816.
  48. Durkan N, Işıloğlu M, Kabar K, Doğan Y. Heavy metal levels in some macrofungi from Büyük Menderes river basin, Turkey. Natura Montenegrina, Podgorica. 2008;7:465-73. Available from: https://www.researchgate.net/publication/228515490.
  49. Radulescu C, Stihi C, Busuioc G, Gheboianu AI, Popescu IV. Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. Bull Environ Cont Toxicol. 2010;84:641-6. DOI: 10.1007/s00128-010-9976-1.
  50. Stihi C, Radulescu C, Busuioc G, Popescu IV, Gheboianu A, Ene A. Studies on the accumulation of heavy metals from the substrate to edible wild mushrooms. Romanian J Phys. 2011;56:257-64. Available from: https://www.researchgate.net/publication/221875790.
  51. European Commission 2008. Commission Regulation No 629/2008 of 2 July 2008, amending Regulation No 1881/2006 setting maximum levels for certain contaminants in foodstuffs, L 173, 1-7. Available from: http://data.europa.eu/eli/reg/2008/629/oj.
  52. Vidal VS. Actualización del conocimiento del género Cyttaria Berk. (Cyttariales, Ascomycota) en Chile (Note on knowledge of the genus Cyttaria Berk. (Cyttariales, Ascomycota) in Chile). Bol Micol. 2020;35. DOI: 10.22370/bolmicol.2020.35.1.2397.
  53. Salazar-Vidal V, Figueroa F, Soto L, Pérez C, Abdala-Díaz R, Becerra J. Nutritional characteristics and cytotoxic effect of polysaccharides extracted from the digüeñes Cyttaria berteroi and Cyttaria hariotii present in Chile. Rev Chil Nutr. 2020;47:750-6. DOI: 10.4067/s0717-75182020000500750.
  54. Schlecht MT, Säumel I. Wild growing mushrooms for the Edible City? Cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin, Germany. Environ Pollut. 2015;204:298-305. DOI: 10.1016/j.envpol.2015.05.018.
DOI: https://doi.org/10.2478/eces-2025-0020 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 403 - 414
Published on: Oct 10, 2025
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Juan J. Triviño, Ignacio Merino-San Martin, Johisner Penagos, Rodrigo Segura, Isabel Pizarro, Verónica Arancibia, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.