Have a personal or library account? Click to login
Cadmium Removal from Aqueous Solutions Using Natural Limestone from Šuplja Stijena (Montenegro) Cover

Cadmium Removal from Aqueous Solutions Using Natural Limestone from Šuplja Stijena (Montenegro)

Open Access
|Oct 2025

References

  1. European Parliament and Council. Directive 2000/60/EC establishing a framework for Community action in the field of water policy. Off J Eur Communities. 2000;L327:1-72. Available from: https://eur-lex.europa.eu/eli/dir/2000/60/oj/eng.
  2. European Parliament and Council. Directive 2013/39/EU amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Union. 2013;L226:1-17. Available from: https://eur-lex.europa.eu/eli/dir/2013/39/oj/eng.
  3. Yildiz S, Sevinç S. Heavy metal adsorption by dewatered iron-containing waste sludge. Ecol Chem Eng S. 2018;25(3):431-56. DOI: 10.1515/eces-2018-0030.
  4. Khan AA, Mondal M. Low-cost adsorbents, removal techniques, and heavy metal removal efficiency. In: New Trends in Removal of Heavy Metals from Industrial Wastewater. Elsevier; 2021. pp. 83-103. DOI: 10.1016/B978-0-12-822965-1.00004-0.
  5. Charazińska S, Burszta-Adamiak E, Lochyński P. Recent trends in Ni(II) sorption from aqueous solutions using natural materials. Rev Environ Sci Bio/Technol. 2022;21(1):105-38. DOI: 10.1007/s11157-021-09599-5.
  6. Kristianto H, Daulay N, Arie AA. Adsorption of Ni(II) Ion onto calcined: A study of equilibrium adsorption isotherm. Indonesian J Chem. 2019;19(1):143-50. DOI: 10.22146/ijc.29200.
  7. Milićević S, Vlahović M, Kragović M, Martinović S, Milošević V, Jovanović I, et al. Removal of copper from mining wastewater using natural raw material - Comparative study between the synthetic and natural wastewater samples. Minerals. 2020;10(9):753. DOI: 10.3390/min10090753.
  8. Fuchida S, Suzuki K, Kato T, Kadokura M, Tokoro C. Understanding the biogeochemical mechanisms of metal removal from acid mine drainage with a subsurface limestone bed at the Motokura Mine, Japan. Sci Rep. 2020;10(1):20889. DOI: 10.1038/s41598-020-78069-9.
  9. Labastida I, Armienta MA, Lara RH, Briones R, González I, Romero F. Kinetic approach for the appropriate selection of indigenous limestones for acid mine drainage treatment with passive systems. Sci Total Environ. 2019;677:404-17. DOI: 10.1016/j.scitotenv.2019.04.373.
  10. Elghali A, Benzaazoua M, Bouzahzah H, Bussière B. Laboratory study on the effectiveness of limestone and cementitious industrial products for acid mine drainage remediation. Minerals. 2021;11(4):413. DOI: 10.3390/min11040413.
  11. Turingan COA, Cordero KS, Santos AL, Tan GSL, Tabelin CB, Alorro RD, et al. Acid mine drainage treatment using a process train with laterite mine waste, concrete waste, and limestone as treatment media. Water. 2022;14(7), 1070. DOI: 10.3390/w14071070.
  12. Zachara JM, Cowan CE, Resch CT. Sorption of divalent metals on limestone. Geochim Cosmochim Acta. 1991;55(6):1549-62. DOI: 10.1016/0016-7037(91)90127-Q.
  13. Godelitsas A, Astilleros JM, Hallam K, Harissopoulos S, Putnis A. Interaction of calcium carbonates with lead in aqueous solutions. Environ Sci Technol. 2003;37(15):3351-60. DOI: 10.1021/es020238i.
  14. Gomez del Rio JA, Morando PJ, Cicerone DS. Natural materials for treatment of industrial effluents: comparative study of the retention of Cd, Zn and Co by limestone and hydroxyapatite. Part I: batch experiments. J Environ Manage. 2004;71(2):169-77. DOI: 10.1016/j.jenvman.2004.02.004.
  15. Ghazy SE, Ragab AH. Removal of lead from water samples by sorption onto powdered limestone. Sep Sci Technol. 2007;42(3):653-67. DOI: 10.1080/01496390601070166.
  16. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N. Removal of heavy metals from aqueous solution by limestone. Int J Global Environ Issues. 2012;12(2-4):171-8. DOI: 10.1504/IJGENVI.2012.049380
  17. Farmaki S, Vorrisi E, Karakasi OK, Moutsatsou A. Effect of limestone and dolomite tailings’ particle size on potentially toxic elements adsorption. Open Geosci. 2018;10(1):726-39. DOI: 10.1515/geo-2018-0058.
  18. Sdiri A, Higashi T, Jamoussi F, Bouaziz S. Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. J Environ Manage. 2012;93(1):245-53. DOI: 10.1016/j.jenvman.2011.08.002.
  19. Silva D, Weber C, Oliveira C. Neutralization and uptake of pollutant cations from acid mine drainage (amd) using limestones and zeolites in a pilot-scale passive treatment system. Miner Eng. 2021;170:107000. DOI: 10.1016/j.mineng.2021.107000.
  20. Radusinović S, Šajn R, Jovanović B, Rokavec D, Hribernik K, Abramović V, et al. The primary and secondary mineral resources of Montenegro and their mapping into the European data model. Geologia Croatica. 2022;75(SI):335-48. DOI: 10.4154/gc.2022.20.
  21. Institute for Standardization of Montenegro (ISME). MEST EN 196‑6:2019. Methods of testing cement - Part 6: Determination of fineness. Podgorica: ISME; 2019. Available from: https://isme.me/sr_ME/project/show/isme:proj:24637.
  22. Khayyun TS, Mseer AH. Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent. Appl Water Sci. 2019;9(8):170. DOI: 10.1007/s13201-019-1061-2.
  23. Institute for Standardization of Montenegro (ISME). MEST EN ISO 11885:2012. Water quality -Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). Podgorica: ISME; 2012. Available from: https://isme.me/sr_ME/project/show/isme:proj:8669.
  24. Liu M, Zou D, Ma T, Liu Z, Li Y. Simultaneous efficient adsorption and accelerated photocatalytic degradation of chlortetracycline hydrochloride over novel Fe-based MOGs under visible light irradiation assisted by hydrogen peroxide. Inorg Chem Front. 2019;6(6):1388-97. DOI: 10.1039/c9qi00046a.
  25. Chiban M, Soudani A, Sinan F, Persin M. Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant. Colloids Surf B. 2011;82(2):267-76. DOI: 10.1016/j.colsurfb.2010.09.013.
  26. Fadhel Ali F, Al-Rawi AS, Aljumialy AM. Limestone residues of sculpting factories utilization as sorbent for removing Pb(II) ion from aqueous solution. Results Chem. 2022;4:100621. DOI: 10.1016/j.rechem.2022.100621.
  27. Gunasekaran S, Anbalagan G. Spectroscopic characterization of natural limestone minerals. Spectrochim Acta, Part A. 2007;68(3):656-64. DOI: 10.1016/j.saa.2006.12.043.
  28. Kim Y, Caumon MC, Barres O, Sall A, Cauzid J. Identification and composition of carbonate minerals of the limestone structure by Raman and infrared spectroscopies using portable devices. Spectrochim Acta Part A. 2021;261:119980. DOI: 10.1016/j.saa.2021.119980.
  29. Chyad TF, Al-Saedi R, Hammood ZA. Copper(II) removal from wastewater using pine cone derived activated carbon. Ecol Chem Eng S. 2024;31(4):539-49. DOI: 10.2478/eces-2024-0035.
  30. Boparai HK, Joseph M, O’Carroll DM. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater. 2011;186(1):458-65. DOI: 10.1016/j.jhazmat.2010.11.029.
  31. Mobasherpour I, Salahi E, Pazouki M. Removal of divalent cadmium cations by means of synthetic nano crystallite hydroxyapatite. Desalination. 2011;266(1-3):142-8. DOI: 10.1016/j.desal.2010.08.016.
  32. Martin-Garin A, van Cappellen P, Charlet L. Aqueous cadmium uptake by limestone: a stirred flow-through reactor study. Geochim Cosmochim Acta. 2003;67(15):2763-74. DOI: 10.1016/S0016-7037(03)00091-7.
  33. Meseldzija S, Petrovic J, Onjia A, Volkov-Husovic T, Nesic A, Vukelic N. Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater. J Ind Eng Chem. 2019;75:246-52. DOI: 10.1016/j.jiec.2019.03.031.
  34. Chowdhury SR, Yanful EK. Kinetics of cadmium(II) uptake by mixed maghemite-magnetite nanoparticles. J Environ Manage. 2013;129:642-51. DOI: 10.1016/j.jenvman.2013.08.028.
  35. Tu YJ, You CF, Chang CK. Kinetics and thermodynamics of adsorption for Cd on green manufactured nano-particles. J Hazard Mater. 2012;235-236:116-22. DOI: 10.1016/j.jhazmat.2012.07.030.
  36. Aziz HA, Adlan Mohd N, Ariffin KS. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresour Technol. 2008;99(6):1578-83. DOI: 10.1016/j.biortech.2007.04.007.
  37. Rangel-Porras G, García-Magno JB, González-Muñoz MP. Lead and cadmium immobilization on calcitic limestone materials. Desalination. 2010;262(1-3):1-10. DOI: 10.1016/j.desal.2010.04.043.
  38. Van HT, Nguyen LH, Nguyen VD, Nguyen XH, Nguyen TH, Nguyen TV, et al. Characteristics and mechanisms of cadmium adsorption onto biogenic aragonite shells-derived biosorbent: Batch and column studies. J Environ Manage. 2019;241:535-48. DOI: 10.1016/j.jenvman.2018.09.079.
  39. Mahmood Z, Amin A, Zafar U, Raza MA, Hafeez I, Akram A. Adsorption studies of cadmium ions on alginate-calcium carbonate composite beads. Appl Water Sci. 2017;7(2):915-21. DOI: 10.1007/s13201-015-0302-2.
  40. Garcıá-Sánchez A, Álvarez-Ayuso E. Sorption of Zn, Cd and Cr on calcite. Application to purification of industrial wastewaters. Miner Eng. 2002;15(7):539-47. DOI: 10.1016/S0892-6875(02)00072-9.
  41. Nguyen TC, Loganathan P, Nguyen TV, Vigneswaran S, Kandasamy J, Naidu R. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chem Eng J. 2015;270:393-404. DOI: 10.1016/j.cej.2015.02.047.
  42. Hojati S, Khademi H. Cadmium sorption from aqueous solutions onto Iranian sepiolite: kinetics and isotherms. J Cent South Univ. 2013;20:3627-32. DOI: 10.1007/s11771-013-1889-9.
  43. Zheng W, Li XM, Wang F, Yang Q, Deng P, Zeng GM. Adsorption removal of cadmium and copper from aqueous solution by areca: a food waste. J Hazard Mater. 2008;157(2-3):490-5. DOI: 10.1016/j.jhazmat.2008.01.029.
  44. Anwar J, Shafique U, Waheed-uz-Zaman, Salman M, Dar A, Anwar S. Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresour Technol. 2010;101(6):1752-5. DOI: 10.1016/j.biortech.2009.10.021.
  45. Ozer A, Tumen F. Cd(II) adsorption from aqueous solution by activated carbon from sugar beet pulp impregnated with phosphoric acid. Fresenius Environ Bull. 2003;12(9):1050-8. Available from: www.researchgate.net/publication/236031805_CdII_Adsorption_from_aqueous_solution_by_activated_carbon_from_sugar_beet_pulp_mpregnated_with_phosphoric_acid.
  46. Tang C, Shu Y, Zhang R, Li X, Song J, Li B, et al. Comparison of the removal and adsorption mechanisms of cadmium and lead from aqueous solution by activated carbons prepared from Typha angustifolia and Salix matsudana. RSC Adv. 2017;7(26):16092-103. DOI: 10.1039/C6RA28035H.
  47. Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon. 2003;41(5):1057-62. DOI: 10.1016/S0008-6223(02)00440-2.
  48. Al-Ghouti MA, Da’ana DA. Guidelines for the use and interpretation of adsorption isotherm models: A review. J Hazard Mater. 2020;393:122383. DOI: 10.1016/j.jhazmat.2020.122383.
  49. Ihsanullah, Al-Khaldi FA, Abusharkh B, Khaled M, Atieh MA, Nasser MS, et al. Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents. J Mol Liq. 2015;204:255-63. DOI: 10.1016/j.molliq.2015.01.033.
  50. Chand P, Shil AK, Sharma M, Pakade YB. Improved adsorption of cadmium ions from aqueous solution using chemically modified apple pomace: Mechanism, kinetics, and thermodynamics. Int Biodeterior Biodegrad. 2014;90:8-16. DOI: 10.1016/j.ibiod.2013.10.028.
  51. Zhou X, Yu X, Maimaitiniyazi R, Zhang X, Qu Q. Discussion on the thermodynamic calculation and adsorption spontaneity re Ofudje et al. (2023). Heliyon. 2024;10(8):e28188. DOI: 10.1016/j.heliyon.2024.e28188.
  52. Akar T, Tunali S, Kiran I. Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochem Eng J. 2005;25(3):227-35. DOI: 10.1016/j.bej.2005.05.006.
  53. Institute for Standardization of Montenegro (ISME). MEST EN ISO 5667‑6:2017. Water quality - Sampling - Part 6: Guidance on sampling of rivers and streams. Podgorica: ISME; 2017. Available from: https://isme.me/sr_ME/project/show/isme:proj:19452
  54. Xubo G, Hongyu L, Peili G, Xingzhou Z, Jiancong F. Simulation study on remediation of acid mine drainage by in-situ injection of limestone based sustained release materials. Bull Geol Sci Technol. 2022;41(5):255-63. DOI: 10.19509/j.cnki.dzkq.2022.0221.
  55. Zhang C, Guan S, Wu L, Ren R, Xiong L. Geochemical characteristics and its paleo-environmental significance of the Lower Cambrian carbonate in the northwestern Tarim Basin: A case study of Well Shutan-1. Bull Geol Sci Technol. 2021;(40):99-111. DOI: 10.19509/j.cnki.dzkq.2021.0508.
  56. Zhang M, Hu XY, Hu XX, Wang Z, Cao K. Research progress on the effects of sulfur on the migration and transformation of cadmium in the earth surface ecosystem: A case study of soil-plant system. Bull Geol Sci Technol. 2022;41(3):236-45. DOI: 10.19509/j.cnki.dzkq.2021.0089.
DOI: https://doi.org/10.2478/eces-2025-0018 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 367 - 386
Published on: Oct 10, 2025
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Bojana Knežević, Vlatko Kastratović, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.