Have a personal or library account? Click to login
Research on Urban Air Quality Prediction System Based on Improved Random Forest Modelling Cover

Research on Urban Air Quality Prediction System Based on Improved Random Forest Modelling

By: Xin Su,  Yifang Xin,  Yuekang Yu and  Yue Zhao  
Open Access
|Jul 2025

References

  1. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015;525:367-71. DOI: 10.1038/nature15371.
  2. Viana M, de Leeuw F, Bartonova A, Castell N, Ozturk E, Ortiz AG. Air quality mitigation in European cities: Status and challenges ahead. Environ Int. 2020;143:105907. DOI: 10.1016/j.envint.2020.105907.
  3. Sanjay C, Harshita K, Nand K, Virendra KS. Examining the locational approach towards optimal siting of air quality monitoring stations in India. Environ Eng Manage J. 2024;23(6):1139-50. DOI: 10.21203/rs.3.rs-2079414/v1.
  4. Mao W, Jiao L, Wang W, Wang J, Tong X, Zhao S. A hybrid integrated deep learning model for predicting various air pollutants, GIScience Remote Sensing. 2021;58(8):1395-412. DOI: 10.1080/15481603.2021.1988429.
  5. Bekkar A, Hssina B, Douzi S, Douzi K. Air-pollution prediction in smart city, deep learning approach. J Big Data. 2021;8:161. DOI: 10.1186/s40537-021-00548-1.
  6. Du S, Li T, Yang Y, Horng S-J. Deep air quality forecasting using hybrid deep learning framework. IEEE. 2021;33(6):2412-24. DOI: 10.1109/TKDE.2019.2954510.
  7. Chang W, Fang J, Zhao H, Zhang H. Attention-based inductive graph neural networks for spatiotemporal kriging. Proc 2024 Int Conf Artificial Intelligence Autonomous Transportation. 2025;1390:256-63. DOI: 10.1007/978-981-96-3961-8_25.
  8. Ben-Nun T, Hoefler T. Demystifying parallel and distributed deep learning: An in-depth concurrency analysis. ACM Computing Surveys (CSUR). 2019; 52(4):1-43. DOI: 10.1145/332006.
  9. Gharaibeh A, Salahuddin MA, Hussini SJ, Khreishah A, Khalil I, Guizani M, et al. Smart cities: A survey on data management, security, and enabling technologies. IEEE Communications Surveys Tutorials. 2017;19(4):2456-501. DOI: 10.1109/COMST.2017.2736886.
  10. Zeinalnezhad M, Gholamzadeh A, Kleme J. Air pollution pre-diction using semi-experimental regression model and adaptive neuro-fuzzy inference system. J Cleaner Prod. 2020;261:121218. DOI: 10.1016/j.jclepro.2020.121218.
  11. Zhang Z, Zhang S, Zhao X, Chen L, Yao J. Temporal difference-based graph transformer networks for air quality PM2.5 prediction: A case study in China. Frontiers Environ Sci. 2022;10:924986. DOI: 10.21203/rs.3.rs-1168251/v1.
  12. Pirani M, Gulliver J, Fuller GW, Blangiardo M. Bayesian spatiotemporal modelling for the assessment of short-term exposure to particle pollution in urban areas. J Exposure Sci Environ Epidemiology. 2013;24:319-27. DOI: 0.1038/jes.2013.85.
  13. Calculli C, Fassò A, Finazzi F, Pollice A, Turnone A. Maximum likelihood estimation of the multivariate hidden dynamic geostatistical model with application to air quality in Apulia, Italy. Environmetrics. 2015;26(6):406-17. DOI: 10.1002/env.2345.
  14. Li X, Peng L, Hu Y, Shao J, Chi TH. Deep learning architecture for air quality predictions. Environ Sci Pollut Res. 2016;23:22408-17. DOI: 10.1007/s11356-016-7812-9.
  15. Maheshwar T, Jaisharma K. Air prediction analysis based on accuracy for air quality index using modified random forest novel technique in comparison with logistic regression. AIP Conf Proc. 2023;2822(1):020153. DOI: 10.1063/5.0172915.
  16. Clifford S, Low-Choy S, Mazaheri M, Salimi F. A Bayesian spatiotemporal model of panel design data: airborne particle number concentration in Brisbane, Australia. Environmetrics. 2019;30(7):e2597. DOI: 10.1002/env.2597.
  17. Wan Y, Xu M, Huang H, Chen SX. A spatio-temporal model for the analysis and prediction of fine particulate matter concentration in Beijing. Environmetrics. 2021;32(1):E2648. DOI: 10.1002/env.2648.
  18. Lu YJ, Li CT. AGSTN: Learning attention-adjusted graph spatio-temporal networks for short-term urban sensor value forecasting. 2020 IEEE Int Conf Data Mining (ICDM). 2020;1148-53. DOI: 10.1109/ICDM50108.2020.00140.
  19. Ouyang XC, Yang Y, Zhang YL, Zhou W. Spatial-temporal dynamic graph convolution neural network for air quality prediction. 2021 Int Joint Conf Neural Networks (IJCNN), Shenzhen, China. 2021;1-8. DOI: 10.1109/IJCNN52387.2021.9534167.
  20. Calo S, Bistaffa F, Jonsson A, Gómez V, Viana M. Spatial air quality prediction in urban areas via message passing. Eng Appl Artificial Intelligence. 2024;133:108191. DOI: 10.1016/j.engappai.2024.108191.
  21. Saez M, Barceló MA. Spatial prediction of air pollution levels using a hierarchical Bayesian spatiotemporal model in Catalonia. Spain. Environ Modelling Software. 2022;151:105369. DOI: 10.1016/j.envsoft.2022;105369.
  22. Han JD, Liu H, Xiong HY, Yang J. Semi-supervised air quality forecasting via self-supervised hierarchical graph neural network. IEEE Trans Knowledge Data Eng. 2023;35(5):5230-43. DOI: 10.1109/TKDE.2022.3149815.
  23. Shaddick G, Yan H, Vienneau D. A Bayesian hierarchical model for assessing the impact of human activity on nitrogen dioxide concentrations in Europe. Environ Ecol Stat. 2013;20:553-70. DOI: 10.1007/s10651-012-0234-z.
  24. Nicolis O, Díaz M, Sahu SK, Marín JC. Bayesian spatiotemporal modeling for estimating short-term exposure to air pollution in Santiago de Chile. Environmetrics. 2019;30(7):e2574. DOI: 10.1002/env.2574.
  25. Fiovaranti G, Martino S, Cameletti M, Cattani G. Spatio-temporal modelling of PM10 daily concentrations in ltaly using the SPDE approach. Atmos Environ. 2021;248118192. DOI: 10.1016/j.atmosenv.2021.118192.
  26. Manoj H, Suhas Suresh A, Nayanita B. Deep learning based detection and management of scrap materials. Environ Eng Manage J. 2024;23(7):1495-505. DOI: 10.30638/eemj.2024.122.
  27. Mukhopadhyay S, Sahu SK. A Bayesian spatiotemporal model to estimate long-term exposure to outdoor air pollution at coarser administrative geographies in England and Wales. J R Stat Soc Ser A Stat Soc. 2018; 181(2):465-86. DOI: 10.1002/env.2574.
  28. Rafsyam Y, Wibowo EP, Candra DS, Talita AS, Rinaldi A. Prediction of cumulonimbus clouds in airport vicinity using NOAA satellite imagery and random forest models. J Logistics Informatics Service Sci. 2024; 11(6):34-54. DOI: 10.33168/JLISS.2024.0603.
  29. Gariazzo C, Carlino G, Silibello C, Renzi M, Finardi S, Pepe N, et al. A multi-city air pollution population exposure study: Combined use of chemical-transport and random-Forest models with dynamic population data. Sci Total Environ. 2022;724:138102. DOI: 10.1016/j.scitotenv.2020;138102.
  30. Alzu’Bi F, Al-Rawabdeh A, Almagbile A. Predicting air quality using random forest: A case study in Amman-Zarqa. Egyptian J Remote Sensing Space Sci. 2024;27(3):604-13. DOI: 10.1016/j.ejrs.2024.07.004.
  31. Wei J, Huang W, Li Z, Xue W, Peng Y, Sun L, et al. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sens Environ. 2019;231:111221. DOI: 10.1016/j.rse.2019.111221.
  32. Yang F. Analysing economic growth and environmental quality: A classical and Bayesian approach. Ecol Chem Eng S. 2024;31(3):425-32. DOI: 10.2478/eces-2024-0029.
  33. Rajasegarar S, Zhang P, Zhou Y, Karuasekera S, Leckie C, Palaniswami M. High resolution spatio-temporal monitoring of air pollutants using wireless sensor networks. Proc 2014 IEEE Ninth Int Conf Intelligent Sensors. Sensor Networks and Information Processing (ISSNIP). Singapore. 2014;1-6. DOI: 10.1109/ISSNIP.2014.6827607.
  34. Wang TT, Wang XP, Ma R, Li XY, Hu XP, Chan FTS, et al. Random forest-Bayesian optimisation for product quality prediction with large-scale dimensions in process industrial cyber-physical systems. IEEE Internet Things J. 2020;7(9):8641-53. DOI: 10.1109/JIOT.2020.2992811.
  35. Huang WZ, He WY, Knibbs LD, Jalaludin B, Guo YM, Morawska L, et al. Improved morbidity-based air quality health index development using Bayesian multi-pollutant weighted model. Environ Res. 2022;204:112397. DOI: 10.1016/j.envres.2021.112397.
  36. Wu XF. Enhanced green logistics: sustainable distribution and warehousing with IMU positioning. Ecol Chem Eng S. 2024;31(2):225-41. DOI: 10.2478/eces-2024-0016.
  37. Feng JS. Implementation of decision support system for ecological environment planning of urban green space. Ecol Chem Eng S. 2024;31(2):177-92. DOI: 10.2478/eces-2024-0012.
  38. Wang Y, Peng H, Wang G, Tang X, Wang X, Liu C. Monitoring industrial control systems viaspatio-temporal graph neural networks. Eng Appl Artificial Intelligence. 2023;122. DOI: 10.1016/j.engappai.2023.106144.
  39. Zheng Z, Su Y, Wang X, Zhou Z. Developing a construction waste management performance calculator for highway construction. Sci Reports. 2024;14(1):27679. DOI: 10.1038/s41598-024-79522-9.
  40. Liu T. Time-varying influence of policy risk on carbon emissions analysis. J Service Innovation Sust Development. 2024;5(2):95-115. DOI: 10.33168/SISD.2024.0206.
DOI: https://doi.org/10.2478/eces-2025-0011 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 213 - 235
Published on: Jul 17, 2025
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Xin Su, Yifang Xin, Yuekang Yu, Yue Zhao, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.