References
- Sánchez Espinosa KC, Rodríguez Davydenko S, Rojas Flores TR, Fernández-González M, Almaguer M. Xerophilic and cellulolytic fungi in the indoor air of houses in Havana. Int Biodeter Biodegr. 2024;188:105730. DOI: 10.1016/j.ibiod.2024.105730.
- Kuske M, Rubio R, Romain AC, Nicolas J, Marco S. Fuzzy k-NN applied to moulds detection. Sens Actuator B Chem. 2005;106:52-60. DOI: 10.1016/j.snb.2004.05.066.
- Heung LJ, Wiesner DL, Wang K, Rivera A, Hohl TM. Immunity to fungi in the lung. Semin Immunol. 2023;66:101728. DOI: 10.1016/j.smim.2023.101728.
- Peccia J, Kwan SE. Buildings, beneficial microbes, and health. Trends Microbiol. 2016;24(8):595-7. DOI: 10.1016/j.tim.2016.04.007.
- Fathy RM, Daigham GE, Mahfouz AY. High-performance carboxymethyl cellulose stabilized Au-Ag nanoparticles using gamma rays for management of the airborne fungus Aspergillus sydowii AGH-5 OP593090. Process Biochem. 2025;152:58-74. DOI: 10.1016/j.procbio.2025.02.014.
- Moslem MA, Yassin MA, El-Samawaty AER, Sayed SRM. New toxigenic Penicillium species associated with apple blue mold in Saudi Arabia. Fresenius Environ Bull. 2011;20(12):3194-8. Available from: https://www.scopus.com/record/display.uri?eid=2-s2.0-84856304709&origin=recordpage.
- Isaksson T, Thelandersson S, Ekstrand-Tobin A, Johansson P. Critical conditions for onset of mould growth under varying climate conditions. Build Environ. 2010;45:1712-21. DOI: 10.1016/j.buildenv.2010.01.023.
- Sessa R, Di Pietro M, Schia Voni G, Santino I, Atieri A, Pinelli S, et al. Microbiological indoor air quality in healthy buildings. New Microbiol. 2002;25:51-6. Available from: https://pubmed.ncbi.nlm.nih.gov/11837391/.
- Chen X, Li F, Liu C, Yang J, Zhang J, Peng C. Monitoring, human health risk assessment and optimized management for typical pollutants in indoor air from random families of university staff, Wuhan City, China. Sustainability. 2017;9:1115. DOI: 10.3390/su9071115.
- Schenkel D, Lemfack MC, Piechulla B, Splivallo R. A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. Front Plant Sci. 2015;6:707. DOI: 10.3389/fpls.2015.00707.
- Gallego E, Roca FJJ, Perales JFF, Sánchez G, Esplugas P. Characterization and determination of the odorous charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds (VOCs) using TD-GC/MS. Waste Manage. 2012;32:2469-81. DOI: 10.1016/j.wasman.2012.07.010.
- Oliveira IS, Galdino da Silva A Jr, Souza de Andrade CA, Oliveira MDL. Biosensors for early detection of fungi spoilage and toxigenic and mycotoxins in food. Curr Opin Food Sci. 2019;29:64-79. DOI: 10.1016/j.cofs.2019.08.004.
- Gallo A, Catellani A, Ghilardelli F, Lapris M, Mastroeni C. Review: Strategies and technologies in preventing regulated and emerging mycotoxin co-contamination in forage for safeguarding ruminant health. Animal. 2024;18(suppl. 2):101280. DOI: 10.1016/j.animal.2024.101280.
- Eggleston PA, Bush RK. Environmental allergen avoidance: An overview. J Allergy Clin Immunol. 2001;107:403-5. DOI: 10.1067/mai.2001.113673.
- Zhao Y, Chen D, Duan H, Li P, Wu W, Wang X, et al. Sample preparation and mass spectrometry for determining mycotoxins, hazardous fungi, and their metabolites in the environment, food, and healthcare. TrAC Trends Analyt Chem. 2023;160:116962. DOI: 10.1016/j.trac.2023.116962.
- Wilkins K, Larsen K. Variation of volatile organ ic compound patterns of mold species from damp buildings. Chemosphere. 1995;31(5):3225-36. DOI: 10.1016/0045-6535(95)00184-A.
- Sham NM, Ahmad NI, Pahrol MA, Leong YH. Fungus and mycotoxins studies in hospital environment: A scoping review. Build Environ. 2021;193:107626. DOI: 10.1016/j.buildenv.2021.107626.
- Przystaś W, Zabłocka-Godlewska E, Nelaniuk-Wolny E. A comparison of sedimentation method and active sampler analysis of microbiological indoor air quality - case study. Ecol Chem Eng S. 2023;30(1):37-48. DOI: 10.2478/eces-2023-0009.
- Mendell MJ, Adams RI. The challenge for microbial measurements in buildings. Indoor Air. 2019;29(4):523-6. DOI: 10.1111/ina.12550.
- Sadowska A, Nynca A, Ruszkowska M, Paukszto L, Myszczynski K, Orlowska K, et al. Transcriptional profiling of porcine granulosa cells exposed to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Chemosphere. 2017;178:368-77. DOI: 10.1016/j.chemosphere.2017.03.055.
- Gutarowska B. Metabolic activity of moulds as a factor of building materials biodegradation. Pol J Microbiol. 2010;59:119-24. Available from: https://pubmed.ncbi.nlm.nih.gov/20734757/.
- Verdier T, Coutand M, Bertron A, Roques C. A review of indoor microbial growth across building materials and sampling and analysis methods. Build Environ. 2014;80:136-49. DOI:10.1016/j.buildenv.2014.05.030.
- Wei GL, Zeng EY. Gas chromatography-mass spectrometry and high-performance liquid chromatography-tandem mass spectrometry in quantifying fatty acids. TrAC Trends Anal Chem. 2011;30:1429-36. DOI: 10.1016/j.trac.2011.05.005.
- Fornal E, Parfieniuk E, Czeczko R, Bilinska-Wielgus N, Frac M. Fast and easy liquid chromatography-mass spectrometry method for evaluation of postharvest fruit safety by determination of mycotoxins: Fumitremorgin C and verruculogen. Postharvest Biol Technol. 2017;131:46-54. DOI: 10.1016/j.postharvbio.2017.05.004.
- Guz L, Sobczuk H, Suchorab Z. Odor measurement by using a portable device with semiconductor gas sensors array. Przem Chem. 2010;89(4):378-81. Available from: https://www.scopus.com/record/display.uri?eid=2-s2.0-77953499748&origin=recordpage.
- Bonah E, Huang X, Aheto JH, Osae R. Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: A review. J Food Sci Technol. 2020;57:1977-90. DOI: 10.1007/s13197-019-04143-4.
- Zhai Z, Liu Y, Li C, Wang D, Wu H. Electronic noses: From gas-sensitive components and practical applications to data processing. Sensors. 2024;24(15):4806. DOI: 10.3390/s24154806.
- Suchorab Z, Frąc M, Guz Ł, Oszust K, Łagód G, Gryta A, et al. A method for early detection and identification of fungal contamination of building materials using e-nose. PLoS One. 2019;14(4):e0215179. DOI: 10.1371/journal.pone.0215179.
- Figaro USA, Inc. MOS gas sensors technical information. Available from: https://www.figarosensor.com.
- Gutierrez-Osuna R. Pattern analysis for machine olfaction: A review. IEEE Sens J. 2002;2:189-202. DOI: 10.1109/JSEN.2002.800688.
- Distante C, Leo M, Siciliano P, Persaud KC. On the study of feature extraction methods for an electronic nose. Sens Actuator B Chem. 2002;87:274-88. DOI: 10.1016/S0925-4005(02)00247-2.
- Sawoszczuk T, Syguła-Cholewińska J, del Hoyo-Meléndez JM. Optimization of headspace solid phase microextraction for the analysis of microbial volatile organic compounds emitted by fungi: Application to historical objects. J Chromatogr A. 2015;1409:30-45. DOI: 10.1016/j.chroma.2015.07.059.
- Polizzi V, Adams A, Malysheva SV, De Saeger S, Van Peteghem C, Moretti A, et al. Identification of volatile markers for indoor fungal growth and chemotaxonomic classification of Aspergillus species. Fungal Biol. 2012;116(9):941-53. DOI: 10.1016/j.funbio.2012.06.001.
- Schleibinger H, Laussmann D, Bornehag CG, Eis D, Rueden H. Microbial volatile organic compounds in the air of moldy and mold-free indoor environments. Indoor Air. 2008;18(2):113-24. DOI: 10.1111/j.1600-0668.2007.00513.x. PMID: 18333991.
- NIOSH, National Institute for Occupational Safety and Health, 2006.
- National Academies of Sciences, Engineering, and Medicine, Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. The National Academies Press, Washington, DC 1996, DOI: 10.17226/5435.
- Nielsen E, Ladefoged O, Søborg I. Evaluation of health hazards by exposure to d-Limonene and proposal of a health-based quality criterion for ambient air. Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, 2013. ISBN: 9788793026339.