References
- Vaverková M. Landfill Impacts on the Environment - Review. Geosciences 2019;9:431. DOI: 10.3390/geosciences9100431.
- Ren S, Zhang L, Zhang Q, Zhang F, Jiang H, Li X, et al. Anammox-mediated municipal solid waste leachate treatment: A critical review. Bioresource Technol. 2022;361:127715. DOI: 10.1016/j.biortech.2022.127715.
- Wijekoon P, Koliyabandara PA, Cooray AT, Lam SS, Athapattu BC, Vithanage M, et al. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. J Hazard Mater. 2022;421:126627. DOI: 10.1016/j.jhazmat.2021.126627.
- Gonzalez-Valencia R, Magana-Rodriguez F, Cristóbal J, Thalasso F. Hotspot detection and spatial distribution of methane emissions from landfills by a surface probe method. Waste Manage. 2016;55:299-305. DOI: 10.1016/j.wasman.2016.03.004.
- Feng SJ, Chen ZW, Chen HX, Zheng QT, Liu R. Slope stability of landfills considering leachate recirculation using vertical wells. Eng Geol. 2018;241:76-85. DOI: 10.1016/j.enggeo.2018.05.013.
- Jovanov D, Vujić B, Vujić G. Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills. J Environ Manage. 2018;216:32-40. DOI: 10.1016/j.jenvman.2017.08.039.
- Varjani S, Shahbeig H, Popat K, Patel Z, Vyas S, Shah AV, et al. Sustainable management of municipal solid waste through waste-to-energy technologies. Bioresource Technol. 2022;355:127247. DOI: 10.1016/j.biortech.2022.127247.
- Vaverková MD, Elbl J, Koda E, Adamcová D, Bilgin A, Lukas V, et al. Chemical composition and hazardous effects of leachate from the active municipal solid waste landfill surrounded by farmlands. Sustainability. 2020;12:4531. DOI: 10.3390/su12114531.
- Wang YN, Shi H, Wang Q, Wang H, Sun Y, Li W, et al. Insights into the landfill leachate properties and bacterial structure succession resulting from the colandfilling of municipal solid waste and incineration bottom ash. Bioresource Technol. 2022;361:127720. DOI: 10.1016/j.biortech.2022.127720.
- Vaverková MD, Adamcová D, Winkler J, Koda E, Červenková J, Podlasek A. Influence of a municipal solid waste landfill on the surrounding environment: Landfill vegetation as a potential risk of allergenic pollen. Int J Environ Res Public Health. 2019;16:5064. DOI: 10.3390/ijerph16245064.
- Cheng Z, Zhu S, Chen X, Wang L, Lou Z, Feng L. Variations and environmental impacts of odor emissions along the waste stream. J Hazard Mater. 2020;384:120912. DOI: 10.1016/j.jhazmat.2019.120912.
- Liu H, Yang P, Peng Y, Li L, Liu G, Wang X, et al. Pollution in the interflow from a simple landfill in a mountainous and hilly area in Southwest China. Sci Total Environ. 2021;793:148656. DOI: 10.1016/j.scitotenv.2021.148656.
- Srivastava AN, Chakma S. Dry tomb-bioreactor landfilling approach for enhanced biodegradation and biomethane generation from municipal solid waste co-disposed with sugar mill pressmud. Bioresource Technol. 2021;342:125895. DOI: 10.1016/j.biortech.2021.125895.
- Xie Y, Xue J, Gnanendran CT, Xie K. Geotechnical properties of fresh municipal solid wastes with different compositions under leachate exposure. Waste Manage. 2022;149:207-17. DOI: 10.1016/j.wasman.2022.06.020.
- Wei Z, Xu T, Zhao D. Treatment of per-and polyfluoroalkyl substances in landfill leachate: status, chemistry and prospects. Environ Sci Water Res Technol. 2019;5:1814-35. DOI: 10.1039/c9ew00645a.
- Jones DL, Williamson KL, Owen AG. Phytoremediation of landfill leachate. Waste Manage. 2006;26:825-37. DOI: 10.1016/j.wasman.2005.06.014.
- Madera-Parra CA, Pena-Salamanca EJ, Pena MR, Rousseau DPL, Lens PNL. Phytoremediation of landfill leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in constructed wetlands. Int J Phytoremediat. 2015;17:16-24. DOI: 10.1080/15226514.2013.828014.
- Lindamulla LMLK, Jayawardene NKR, Wijerathne WSMKS, Othman M, Nanayakkara KGN, Jinadasa KBSN, et al. Treatment of mature landfill leachate in tropical climate using membrane bioreactors with different configurations. Chemosphere. 2022;307:136013. DOI: 10.1016/j.chemosphere.2022.136013.
- Yu D, Pei Y. Persulfate-enhanced continuous flow three-dimensional electrode dynamic reactor for treatment of landfill leachate. J Environ Manage. 2022;321:115890. DOI: 10.1016/j.jenvman.2022.115890.
- Anand N, Palani SG. A comprehensive investigation of toxicity and pollution potential of municipal solid waste landfill leachate. Sci Total Environ. 2022;838:155891. DOI: 10.1016/j.scitotenv.2022.155891.
- Brennan RB, Healy MG, Morrison L, Hynes S, Norton DC, Clifford E. Management of landfill leachate: The legacy of European Union Directives. Waste Manage. 2016;55:355-63. DOI: 10.1016/j.wasman.2015.10.010.
- Budi S, Suliasih BA, Othman MS, Heng LZ, Surif S. Toxicity identification evaluation of landfill leachate using fish, prawn and seed plant. Waste Manage. 2016;55:231-7. DOI: 10.1016/j.wasman.2015.09.022.
- Da Costa FM, Daflon SDA, Bila DM, da Fonseca FV, Campos JC. Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes. Waste Manage. 2018;76:606-13. DOI: 10.1016/j.wasman.2018.02.030.
- Ergene D, Aksoy A, Sanin FD. Comprehensive analysis and modeling of landfill leachate. Waste Manage. 2022;145:48-59. DOI: 10.1016/j.wasman.2022.04.030.
- Yan H, Cousins IT, Zhang C, Zhou Q. Perfluoroalkyl acids in municipal landfill leachates from China: occurrence, fate during leachate treatment and potential impact on groundwater. Sci Total Environ. 2015;524-525:23-31. DOI: 10.1016/j.scitotenv.2015.03.111.
- Fuertes I, Gómez-Lavín S, Elizalde MP, Urtiaga A. Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates. Chemosphere. 2017;168:399-407. DOI: 10.1016/j.chemosphere.2016.10.072.
- Putra RS, Hastika FY. Removal of heavy metals from leachate using electro-assisted phytoremediation (EAPR) and up-take by water hyacinth (Eichornia crassipes). Indones J Chem. 2018;18:306-12. DOI: 10.22146/ijc.29713.
- Saxena V, Padhi SK, Dikshit PK, Pattanaik L. Recent developments in landfill leachate treatment: Aerobic granular reactor and its future prospects. Environ Nanotechnol Monit Manage. 2022;18:100689. DOI: 10.1016/j.enmm.2022.100689.
- Nevel L, Martens J, Oarts K, Verheyen K. Phytoextraction of metals from soils: How far from practice? Environ Pollut. 2007;150:34-40. DOI: 10.1016/j.envpol.2007.05.024.
- Elbl J, Lukas V, Sobotková J, Huňady I, Kintl A. Effect of drought on the development of Deschampsia caespitosa (L.) and selected soil parameters during a three-year lysimetric experiment. Life. 2023;13:745. DOI: 10.3390/life13030745.
- Wang X, Li QX, Heidel M, Wu Z, Yoshimoto A, Leong G, Pan D, Ako H. Comparative evaluation of industrial hemp varieties: Field experiments and phytoremediation in Hawaii. Ind Crops Prod. 2021;170:113683. DOI: 10.1016/j.indcrop.2021.113683.
- Lasat MM. Phytoextraction of toxic metals. A review of biological mechanisms. J Environ Qual. 2002;31:109-20. DOI: 10.2134/jeq2002.1090.
- Soudek P, Petrová Š, Vaňková R, Song J, Vaněk T. Accumulation of heavy metals using Sorghum sp. Chemosphere. 2014;104:15-24. DOI: 10.1016/j.chemosphere.2013.09.079.
- Li Y, Ma J, Li Y, Xiao C, Shen X, Chen J, et al. Nitrogen addition facilitates phytoremediation of PAH-Cd cocontaminated dumpsite soil by altering alfalfa growth and rhizosphere communities. Sci Total Environ. 2022;806:150610. DOI: 10.1016/j.scitotenv.2021.150610.
- Mayakaduwage S, Ekanayake A, Kurwadkar S, Rajapaksha AU, Vithanage M. Phytoremediation prospects of per- and polyfluoroalkyl substances: A review. Environ Res. 2022;212:113311. DOI: 10.1016/j.envres.2022.113311.
- Kintl A, Šmeringai J, Sobotková J, Huňady I, Brtnický M, Hammerschmiedt T, et al. Potential for the accumulation of PTEs in the biomass of Melilotus albus Med. used for biomethane production. Appl Sci. 2023;13:4223. DOI: 10.3390/app13074223.
- He T, Zhang M, Baosheing J. Insight into the synergistic effect and products distribution during co-pyrolysis of phytoremediation residue and municipal sewage sludge through experiment and reaction force field simulation. Fuel. 2023;333:126326. DOI: 10.1016/j.fuel.2022.126326.
- Pandey VC, Bajpai O, Singh N. Energy crops in sustainable phytoremediation. Renew Sust Energy Rev. 2016;54:58-73. DOI: 10.1016/j.rser.2015.09.078.
- Vaverková MD, Zloch J, Adamcová D, Radziemska M, Vyhnánek T, Trojan V, et al. Landfill leachate effects on germination and seedling growth of hemp cultivars (Cannabis sativa L.). Waste Biomass Valor. 2019;10:369-76. DOI: 10.1007/s12649-017-0058-z.
- Ojuederie OB, Babalola OO. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int J Environ Res Public Health. 2017;14:1504. DOI: 10.3390/ijerph14121504.
- Burges A, Oustriere N, Galende M, Marchand L, Bes CM, Paidjan E, et al. Phytomanagement with grassy species, compost and dolomitic limestone rehabilitates a meadow at a wood preservation site. Ecol Eng. 2021;160:106132. DOI: 10.1016/j.ecoleng.2020.106132.
- Timalsina H, Gyawali T, Ghimire S, Paudel SR. Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere. 2022;306:135581. DOI: 10.1016/j.chemosphere.2022.135581.
- OECD. Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test, OECD Guidelines for the Testing of Chemicals, Section 2. Paris: OECD Publishing, 2006. DOI: 10.1787/9789264070066-en.
- Hernández A, Loera N, Contreras M, Fischer L, Sánchez D. Comparison between Lactuca sativa L. and Lolium perenne: Phytoextraction Capacity of Ni, Fe, and Co from Galvanoplastic Industry. In: Wang T, et al. Energy Technology 2019. The Minerals, Metals Materials Series. Cham: Springer; DOI: 10.1007/978-3-030-06209-5_14.
- Luo J, Cao M, Zhang C, Wu J, Gu XWS. The influence of light combination on the physicochemical characteristics and enzymatic activity of soil with multi-metal pollution in phytoremediation. J Hazard Mater. 2020;393:122406. DOI: 10.1016/j.jhazmat.2020.122406.
- Bagheri M, Al-jabery K, Wunsch DC, Burken JG. A deeper look at plant uptake of environmental contaminants using intelligent approaches. Sci Total Environ. 2019;651:561-9. DOI: 10.1016/j.scitotenv.2018.09.048.
- Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, et al. Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotox Environ Safety. 2014;106:164-72. DOI: 10.1016/j.ecoenv.2014.03.007.
- Ma P, Bai TH, Wang XQ, Ma FW. Effects of light intensity on photosynthesis and photoprotective mechanisms in apple under progressive drought. J Integr Agric. 2015;14:1755-66. DOI: 10.1016/S2095-3119(15)61148-0.
- Dong C, Fu Y, Liu G, Liu H. Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. J Agron Crop Sci. 2014;200:219-30. DOI: 10.1111/jac.12059.
- Levine LH, Paré PW. Antioxidant capacity reduced in scallions grown under elevated CO2 independent of assayed light intensity. Adv Space Res. 2009;44:887-94. DOI: 10.1016/j.asr.2009.06.017.
- Ning W, Yang Y, Chen W, Li R, Cao M, Luo J. Effect of light combination on the characteristics of dissolved organic matter and chemical forms of Cd in the rhizosphere of Arabidopsis thaliana involved in phytoremediation. Ecotoxicol Environ Safety. 2022;231:113212. DOI: 10.1016/j.ecoenv.2022.113212.
- Loi M, Villani A, Paciolla F, Mulè G, Paciolla C. Challenges and opportunities of light-emitting diode (LED) as key to modulate antioxidant compounds in plants. A review. Antioxidants. 2020;10:42. DOI: 10.3390/antiox10010042.
- Fu Y, Li HY, Yu J, Liu H, Cao ZY, Manukovsky NS, Liu H. Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. var. youmaicai). Sci Hortic. 2017;214:51-7. DOI: 10.1016/j.scienta.2016.11.020.
- Atta M, Idris A, Bukhari A, Wahidin S. Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresource Technol. 2013;148:373-8. DOI: 10.1016/j.biortech.2013.08.162.
- Choi YK, Kumaran RS, Jeon HJ, Song HJ, Yang YH, Lee SH, et al. LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus. Spectrochim Acta A Mol Biomol Spectrosc. 2015;145:245-53. DOI: 10.1016/j.saa.2015.03.035.
- Santa-Cruz J, Robinson B, Krutyakov YA, Shapoval OA, Peñaloza P, Yáñez C, et al. An assessment of the feasibility of phytoextraction for the stripping of bioavailable metals from contaminated soils. Environ Toxicol Chem. 2022;42:558-65. DOI: 10.1002/etc.5554.
- Kwon HK, Jeon JY, Oh SJ. Potential for heavy metal (copper and zinc) removal from contaminated marine sediments using microalgae and light emitting diodes. Ocean Sci J. 2017;52:57-66. DOI: 10.1007/s12601-017-0001-z.
- Koopmans GF, Römkens PFAM, Fokkema MJ, Song J, Luo YM, Japenga J, et al. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut. 2008;156:905-14. DOI: 10.1016/j.envpol.2008.05.029.
- ČSN EN ISO 11885. Water quality - Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). Geneva: ISO - International Organization for Standardization; 2007. Available from: https://seznamcsn.agentura-cas.cz/Vysledky.aspx.
- ČSN 75 7440. Water quality - Determination of total mercury by thermal decomposition, amalgamation and atomic absorption spectrometry. Praha: Czech Standardization Agency; 1999. Available from: https://seznamcsn.agentura-cas.cz/Vysledky.aspx.
- Šourková M, Adamcová D, Zloch J, Skutnik Z, Vaverkova MD. Evaluation of the phytotoxicity of leachate form a municipal solid waste landfill: The case study of Bukov landfill. Environments. 2020;7:111. DOI: 10.3390/environments7120111.
- Vasile GG, Tenea AG, Dinu C, Iordache AMM, Gheorghe S, Mureseanu M, et al. Bioavailability, accumulation and distribution of toxic metals (As, Cd, Ni and Pb) and their impact on Sinapis alba plant nutrient metabolism. Int J Environ Res Public Health. 2021;18:12947. DOI: 10.3390/ijerph182412947.
- Palm ER, Nissim WG, Adamcová D, Podlasek A, Jakimiuk A, Vaverková MD. Sinapis alba L. and Triticum aestivum L. as biotest model species for evaluating municipal solid waste leachate toxicity. J Environ Manage. 2022;302:114012. DOI: 10.1016/j.jenvman.2021.114012.
- Lu W, Li Z, Shao Z, Zheng C, Zou H, Zhang J. Lead tolerance and enrichment characteristics of several ornamentals under hydroponic culture. Bull Environ Contam Toxicol. 2020;105:166-72. DOI: 10.1007/s00128-020-02905-x.
- Ahmad A. Phytoremediation of heavy metals and total petroleum hydrocarbon and nutrients enhancement of Typha latifolia in petroleum secondary effluent for biomass growth. Environ Sci Pollut Res. 2022;29:5777-86. DOI: 10.1007/s11356-021-16016-5.
- Malayeri BE, Chehregani A, Yousefi N, Lorestani B. Identification of the hyper accumulator plants in copper and iron mine in Iran. Pak J Biol Sci. 2008;11:490-2. DOI: 10.3923/pjbs.2008.490.492.
- Ayeni O. Assessment of heavy metals in wastewater obtained from an industrial area in Ibadan, Nigeria. RMZ - Materials and the Geoenvironment. 2014;61:19-24. URN:NBN:SI:doc-J42FIJT1. Available from: http://www.dlib.si.
- Chiroma TM, Ebewele RO, Hymore FK. Comparative assessment of heavy metal levels in soil, vegetables and urban grey water used for irrigation in Yola and Kano. Int Ref J Eng Sci. 2014;3:1-9. Available from: https://www.irjes.com/Papers/vol3-issue2/A03020109.pdf.
- Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH. Present and long-term composition of MSW landfill leachate: A review. Crit Rev Env Sci Technol. 2002;32:297-336. DOI: 10.1080/10643380290813462.
- Zhang Z, Zhang N, Zhao M, Zhang Y, Yang W, Liu B. Occurrence and pollution risk assessment of emerging contaminants in groundwater in the vicinity of a typical municipal landfill in northeastern China. J Hydrol. 2025;648:132408. DOI: 10.1016/j.jhydrol.2024.132408.
- Yang X, Jia Ch, Yao Y, Yang T, Shao S. Precise management and control around the landfill integrating artificial intelligence and groundwater pollution risks. Chemosphere. 2024;364: 143185. DOI: 10.1016/j.chemosphere.2024.143185.
- Adamcová D, Radziemska M, Ridošková A, Bartoň S, Pelcová P, Elbl J, et al. Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere. 2017;185:1011-8. DOI: 10.1016/j.chemosphere.2017.07.060.
- Vaverková MD, Elbl J, Radziemska M, Adamcová D, Kintl A, Baláková L, et al. Environmental risk assessment and consequences of municipal solid waste disposal. Chemosphere. 2018;208:569-78. DOI: 10.1016/j.chemosphere.2018.06.026.
- Salehi N, Azhdarpoor A, Shirdarreh M. The effect of different levels of leachate on phytoremediation of pyrene-contaminated soil and simultaneous extraction of lead and cadmium. Chemosphere. 2020;246:125845. DOI: 10.1016/j.chemosphere.2020.125845.
- Sayago UFC, Castro YP, Rivera LRC, Mariaca AG. Estimation of equilibrium times and maximum capacity of adsorption of heavy metals by E. crassipes (review). Environ Monit Assess. 2020;192:141. DOI: 10.1007/s10661-019-8032-9.
- Elbl J, Lukas V, Sobotková J, Huňady I, Kintl A. Effect of drought on the development of Deschampsia caespitosa (L.) and selected soil parameters during a three-year lysimetric experiment. Life. 2023;13:745. DOI: 10.3390/life13030745.
- Kacálková L, Tlustoš P, Száková J. Phytoextraction of cadmium, copper, zinc and mercury. Plant Soil Environ. 2009;55:295-304. DOI: 10.17221/100/2009-PSE.
- Turan M, Esringü A. Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant Soil Environ. 2007;53:7-15. DOI: 10.17221/3188-PSE.
- Evangelou MWH, Kutschinski-Klöss S, Ebel M, Schaeffer A. Potential of Borago officinalis, Sinapis alba L. and Phacelia boratus for phytoextraction of Cd and Pb from soil. Water Air Soil Pollut. 2007;182:407-16. DOI: 10.1007/s11270-007-9351-y.
- Fargašová A. Phytotoxic Effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. Seedlings and their Accumulation in Roots and Shoots. Biol. Plantarum. 2001;44:471-3. DOI: 10.1023/A:1012456507827.