Have a personal or library account? Click to login
Synthesis of Sustainable Superabsorbent Biopolymer: Modified Rice Straw Cellulose with Initiator and Crosslink Agent Cover

Synthesis of Sustainable Superabsorbent Biopolymer: Modified Rice Straw Cellulose with Initiator and Crosslink Agent

Open Access
|Feb 2025

References

  1. Karoyo AH, Wilson LD. A review on the design and hydration properties of natural polymer-based hydrogels. Materials (Basel). 2021;14:1-36. DOI: 10.3390/ma14051095.
  2. Purohit P, Bhatt A, Mittal RK, Abdellattif MH, Farghaly TA. Polymer grafting and its chemical reactions. Front Bioeng Biotechnol. 2023;10:1-22. DOI: 10.3389/fbioe.2022.1044927.
  3. Sunarti TC, Febrian MI, Ruriani E, Yuliasih I. Some properties of chemical cross-linking biohydrogel from starch and chitosan. Int J Biomater. 2019;2019. DOI: 10.1155/2019/1542128.
  4. Irwan A, Syabatini A. Acrylamide (AAM) based superabsorbent polymer grafted on banana weevil starch (Musa paradisiaca). Pros Semirata FMIPA Univ Lampung. 2013:45-54. Available from: www.academia.edu/26856331/Polimer_Superabsorben_Berbasis_Akrilamida_AAM_Tercangkok_Pati_Bonggol_Pisang_Musa_paradisiaca.
  5. Dewanti DP, Ma’rufatin A, Nugroho R. Test of water absorption capacity by cellulose from palm bunches as a super absorbent polymer (SAP) material in disposable diapers. J Rekayasa Lingkung. 2020;12. Available from: https://www.researchgate.net/publication/343604542_Uji_Kapasitas_Absorpsi_Air_Oleh_Selulosa_Dari_Tandan_Sawit_Sebagai_Bahan_Super_Absorbent_Polymer_Sap_Pada_Popok_Sekali_Pakai.
  6. Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel). 2021;13. DOI: 10.3390/polym13071105.
  7. Omidian H, Akhzarmehr A, Chowdhury SD. Advancements in cellulose-based superabsorbent hydrogels: Sustainable solutions across industries. Gels. 2024;10. DOI: 10.3390/gels10030174.
  8. Kenawy ER, Elnaby HH, Azaam MM. Synthesis of superabsorbent composite based on chitosan-g-poly(acrylamide)/attapulgite. Polym Bull. 2024;81:3527-43. DOI: 10.1007/s00289-023-04877-4.
  9. Statistical Yearbook of Indonesia 2023. Available from: https://www.bps.go.id/en/publication/2023/02/28/18018f9896f09f03580a614b/statistik-indonesia-2023.html.
  10. Setiarto RHB. Prospects and potential of utilizing rice straw lignosellulose into compost, silage and biogas through microbial fermentation. J Selulosa. 2016;3:51-66. Available from: https://www.researchgate.net/publication/319039312_Prospek_Dan_Potensi_Pemanfaatan_Lignoselulosa_Jerami_Padi_Menjadi_Kompos_Silase_Dan_Biogas_Melalui_Fermentasi_Mikroba.
  11. Chen C, Chen Z, Chen J, Huang J, Li H, Sun S, et al. Profiling of chemical and structural composition of lignocellulosic biomasses in tetraploid rice straw. Polymers. 2020;12. DOI: 10.3390/polym12020340.
  12. Laya S, Shamina S, Moossa PP. Production of bioplastic from rice straw cellulose. The Pharma Innovation J. 2022;11:1742-4. Available from: https://www.thepharmajournal.com/archives/2022/vol11issue9S/PartV/S-11-5-239-601.pdf
  13. Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater. 2021;33:1-18. DOI: 10.1002/adma.202000619.
  14. Datta R. Acidogenic fermentation of lignocellulose-acid yield and conversion of components. Biotechnol Bioeng. 1981;23:2167-70. DOI: 10.1002/bit.260230921.
  15. Abidi N, Cabrales L, Haigler CH. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr Polym. 2014;100:9-16. DOI: 10.1016/j.carbpol.2013.01.074.
  16. Yulianti W, Laila F. Superabsorbent synthesis and characterization of rice straw cellulose. J Sains Dan Terap. 2014;1:46-52. DOI: 10.29244/jstsv.4.1.46-52.
  17. Razali NAM, Ismail MF, Aziz FA. Characterization of nanocellulose from Indica rice straw as reinforcing agent in epoxy-based nanocomposites. Polym Eng Sci. 2021;61:1594-1606. DOI: 10.1002/pen.25683.
  18. Amirah N, Razali M, Sohaimi RM, Nor R, Raja I, Abdullah N, et al. Comparative study on extraction of cellulose fiber from rice Straw waste from chemo-mechanical and pulping method. Polymers (Basel). 2022;14:387. DOI: 10.3390/polym14030387.
  19. Mudiyanselage TK, Neckers DC. Highly absorbing superabsorbent polymer. J Polymer Science Part A. Polym Chem. 2008;46:1357-64. DOI: 10.1002/pola.22476.
  20. Misiewicz J, Głogowski A, Lejcuś K, Marczak D. The characteristics of swelling pressure for superabsorbent polymer and soil mixtures. Materials (Basel). 2020;13:1-13. DOI: 10.3390/ma13225071.
  21. Susmanto P, Putri AR, Nugraha MZ. Production of superabsorbent biopolymer from modified cellulose-based polivinyl alcohol with variation of the number of initiator and crosslink agent. J Ecol Eng. 2023;24:98-108. DOI: 10.12911/22998993/162786.
  22. Chopra H, Bibi S, Kumar S, Khan MS, Kumar P, Singh I. Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application. Gels. 2022;8. DOI: 10.3390/gels8020111.
  23. Kidwell DA. Superabsorbent polymers - media for the enzymatic detection of ethyl alcohol in urine. Anal Biochem. 1989;182:257-61. DOI: 10.1016/0003-2697(89)90590-3.
  24. Abidin AZ, Susanto G, Sastra NMT, Puspasari T. Synthesis and characterization of superabsorbant polymers from acrylamide. J Tek Kim Indones. 2012;11:87-93. DOI: 10.5614/jtki.2012.11.2.5
  25. Mechtcherine V, Wyrzykowski M, Schröfl C, Snoeck D, Lura P, De Belie N, et al. Application of super absorbent polymers (SAP) in concrete construction - update of RILEM state-of-the-art report. Mater Struct Constr. 2021;54. DOI: 10.1617/s11527-021-01668-z.
  26. Jafari M, Najafi GR, Sharif MA, Elyasi Z. Superabsorbent polymer composites derived from polyacrylic acid: Design and synthesis, characterization, and swelling capacities. Polym Polym Compos. 2021;29:733-9. DOI: 10.1177/0967391120933482.
  27. Zhang M, Zhang S, Chen Z, Wang M, Cao J, Wang R. Preparation and characterization of superabsorbent polymers based on sawdust. Polymers. 2019;11. DOI: 10.3390/polym11111891.
  28. Ninciuleanu CM, Ianchis R, Alexandrescu E, Mihaescu CI, Scomoroscenco C, Nistor CL, et al. The effects of monomer, crosslinking agent, and filler concentrations on the viscoelastic and swelling properties of poly(methacrylic acid) hydrogels: A comparison. Materials. 2021;14. DOI: 10.3390/ma14092305.
  29. Lacoste C, Lopez-Cuesta JM, Bergeret A. Development of a biobased superabsorbent polymer from recycled cellulose for diapers applications. Eur Polym J. 2019;116:38-44. DOI: 10.1016/j.eurpolymj.2019.03.013.
  30. Zhu Q, Barney CW, Erk KA. Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete. Mater Struct Constr. 2015;48:2261-76. DOI: 10.1617/s11527-014-0308-5.
DOI: https://doi.org/10.2478/eces-2024-0034 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 527 - 538
Published on: Feb 19, 2025
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Prahady Susmanto, Anggi Junia Putri, Ajeng Parwati, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.