References
- Harris G. Phytoplankton Ecology: Structure, Function and Fluctuation. London, New York: Chapman and Hall; 1986. DOI: 10.1007/978-94-009-3165-7.
- Chapman RL. Algae: the world’s most important “plants” - an introduction. Mitig Adapt Strateg Glob Change. 2013;18:5-12. DOI: 10.1007/s11027-010-9255-9.
- Geider RJ, Moore CM, Suggett DJ. Ecology of Marine Phytoplankton. In: Ecology and the Environment. New York: Springer; 2014:483-531. DOI: 0.1007/978-1-4614-7501-9_23.
- Lapointe BE, Burkholder JM, Alstyne KLV. Harmful Macroalgal Blooms in a Changing World: Causes, Impacts, and Management. Chapter 15 in Harmful Algal Blooms: A Compendium Desk Reference. 2018:515-60. DOI: 10.1002/9781118994672.ch15.
- Zhang Y, Whalen JK, Cai C, Shan K, Zhou H. Harmful cyanobacteria-diatom/dinoflagellate blooms and their cyanotoxins in freshwaters: A nonnegligible chronic health and ecological hazard. Water Res. 2023;233:119807. DOI: 10.1016/j.watres.2023.119807.
- Patino R, Christensen VG, Graham JL, Rogosch JS, Rosen BH. Toxic algae in inland waters of the conterminous United States - A review and synthesis. Water. 2023;15:2808. DOI: 10.3390/w15152808.
- Park J, Patel K, Lee WH. Recent advances in algal bloom detection and prediction technology using machine learning. Sci Total Environ. 2024;938:173546. DOI: 10. 1016/j.scitotenv.2024.173546.
- Igwaran A, Kayode AJ, Moloantoa KM, Khetsha ZP, Unuofin JO. Cyanobacteria harmful algae blooms: causes, impacts, and risk management. Water Air Soil Pollut. 2024;235:71. DOI: 10.1007/s11270-023-06782-y.
- Calomeni-Eck AJ, McQueen AD, Kinley-Baird CM, Clyde Jr T. Identification of cyanobacteria overwintering cells and environmental conditions causing growth: Application for preventative management. Ecol Solut Evid. 2024;5:e12326. DOI: 10.1002/2688-8319.12326.
- Yan Y, Xu Z, Yang B, Jiang, He S, Sheng H, et al. Spatio-temporal variations of water quality and planktonic algal communities in Qingshan Reservoir, China. Pol J Environ Stud. 2023;32:2405-16. DOI: 10.15244/pjoes/158907.
- Barkoh A, Fries LT. Aspects of the origins, ecology, and control of golden alga Prymnesium parvum: Introduction to the featured collection. JAWRA J Am Water Resources Assoc. 2010;46:1-5. DOI: 0.1111/j.1752-1688.2009.00394.x.
- Roelke D, Manning S. Harmful Algal Species Fact Sheet: Prymnesium parvum (Carter) Golden Algae: A Compendium Desk Reference. In: Harmful Algal Blooms. Hoboken, NJ: Wiley; 2018:629-32. DOI: 10.1002/9781118994672.ch16q.
- Kitsiou D, Karydis M. Coastal marine eutrophication assessment: A review on data analysis. Environ Int. 2011;37:778-801. DOI: 10.1016/j.envint.2011.02.004.
- Goovaerts P. Geostatistics for Natural Resources Evaluation. Oxford: University Press; 1997. DOI: 10.1093/oso/9780195115383.001.0001.
- Webster R, Oliver MA. Geostatistics for Environmental Scientists. 2nd ed. Chichester: Wiley; 2007: DOI: 10.1002/9780470517277.
- Gómez-Hernández JJ. Geostatistics for environmental applications. Math Geosci. 2016;48:1-2. DOI: 10.1007/s11004-015-9627-5.
- Christakos G. Modern Spatiotemporal Geostatisics. New York: Oxford University Press; 2000: ISBN: 0195138953.
- Zawadzki J, Fabijańczyk P. On the influence of the nugget effect on the efficiency of magnetometric soil surface screening. Ecol Chem Eng S. 2023;29:525-35. DOI: 10.2478/eces-2022-0038.
- Chilès JP, Delfiner P. Geostatistics: Modeling Spatial Uncertainty. 2nd ed. Hoboken, NJ: Wiley; 2012: ISBN: 9780470183151.
- Clark I, Harper WV. Practical Geostatistics 2000. Columbus Ohio: Ecosse North America; 2000. ISBN: 0970331746.
- Zawadzki J. Metody geostatystyczne: dla kierunków przyrodniczych i technicznych (Geostatistical Methods: For Natural and Technical Sciences). Warszawa: Ofic Wyd Polit Warszawskiej; 2011. ISBN: 8372079536 .
- Isaaks EH, Srivastava RM. An Introduction to Applied Geostatistics. New York: Oxford University Press; 1990. ISBN: 9780195050127.
- Chilès JP, Desassis N. Fifty Years of Kriging. In: Daya Sagar BS, Cheng Q, Agterberg F, editors. Handbook of Mathematical Geosciences: Fifty Years of IAMG. Cham: Springer Int Publishing; 2018:589-612. DOI: 978-0-19-505012-7.
- Hengl T. A Practical Guide to Geostatistical Mapping of Environmental Variables. EUR 22904 EN. Luxembourg: Office for Official Publications of the European Communities; 2007. ISBN: 9789279069048.
- Cressie N. Statistics for Spatial Data. NY, Chichester, Toronto, Brisbane, Singapore: John Wiley Sons; 2015. ISBN: 9781119115182.
- Varouchakis EA. 1 - Geostatistics: Mathematical and Statistical Basis. In: Corzo G, Varouchakis EA, editors. Spatiotemporal Analysis of Extreme Hydrological Events. Elsevier; 2019:1-38. ISBN: 9780128116890.
- Kleijnen J. Kriging: Methods and Applications. SSRN Electronic J. 2017; DOI: 10.2139/ssrn.3075151.
- Oliver MA, Webster R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. CATENA 2014;113:56-69. DOI: 10.1016/j.catena.2013.09.006.
- Diggle P, Lophaven S. Bayesian geostatistical design. Scandinavian J Statistics. 2006;33:53-64. DOI: 10.1111/j.1467-9469.2005.00469.x.
- Pilz J, Spöck G. Why do we need and how should we implement Bayesian kriging methods. Stoch Environ Res Risk Assess. 2008;22:621-32. DOI:10.1007/s00477-007-0165-7.
- Montero J, Fernández-Avilés G, Mateu J. Spatial and Spatio-Temporal Geostatistical Modeling and Kriging. Wiley; 2015. DOI: 10.1002/9781118762387.
- Gómez-Rubio V, Rue H. Markov chain Monte Carlo with the Integrated Nested Laplace Approximation. Stat Comput. 2018;28:1033-51. DOI: 10.1007/s11222-017-9778-y.
- Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics Computing. 2000;10:325-37. DOI: 10.1023/A:1008929526011.
- Ntzoufras I. Bayesian Modeling Using WinBUGS. Hoboken, NJ: Wiley; 2009: DOI: 10.1002/9780470434567.
- Blangiardo M, Cameletti M. Spatial and Spatio-temporal Bayesian Models with R - INLA. Chichester, UK: Wiley; 2015. DOI: 10.1002/9781118950203.
- Van Niekerk J, Krainski E, Rustand D, Rue H. A new avenue for Bayesian inference with INLA. Computational Statistics Data Analysis. 2023;181:107692. DOI: 10.1016/j.csda.2023.107692.
- Wu X, Mitsch W. Spatial and temporal patterns of algae in newly constructed freshwater wetlands. Wetlands. 1998;18:9-20. DOI: 10.1007/BF03161438.
- Kawata M, Hayashi M, Hara T. Interactions between neighboring algae and snail grazing in structuring microdistribution patterns of periphyton. Oikos. 2001;92:404-16. DOI: 10.1034/j.1600-0706.2001.920302.x.
- Zhao B, Cai Q. Geostatistical analysis of chlorophyll a in freshwater ecosystems. J Freshwater Ecol. 2004;19:613-21. DOI: 10.1080/02705060.2004.9664742.
- Burrough P. Fractal dimensions of landscapes and other environmental data. Nature. 1981;294:240-2. DOI: 10.1038/294240a0.
- Welty L, Stein M. Modeling Phytoplankton: Covariance and Variogram Model Specification for Phytoplankton Levels in Lake Michigan. In: geoENV IV - Geostatistics for Environmental Applications. Barcelona: Cluver Academic Publishers; 2004:163-73. DOI: 10.1007/1-4020-2115-1_14.
- Falkowski PG, Dubinsky Z, Wyman K. Growth-irradiance relationships in phytoplankton. Limnology Oceanography. 1985;30:311-21. DOI: 10.4319/lo.1985.30.2.0311.
- Eadie BJ, Robbins JA, Klump JV, Schwab DJ, Edgington DN. Winter-spring storms and their influence on sediment resuspension, transport, and accumulation patterns in Southern Lake Michigan. Oceanography. 2008;21:118-35. DOI: 10.5670/oceanog.2008.09.
- Müller D. Estimation of algae concentration in cloud covered scenes using geostatistical methods. In: Proceedings of Envisat Symposium, 23-27 April 2007, Montreux, Switzerland. 2007. ISBN: 9789292912000.
- Wang XJ, Liu RM. Spatial analysis and eutrophication assesment for chlorophyll a in Taihu Lake. Environ Monit Assess. 2005;101:167-74. DOI: 10.1007/s10661-005-9154-9.
- Zhang F, Tang H, Jin G, Zhu Y, Zhang H, Stewart RA, et al. Evaluating nutrient distribution and eutrophication pattern in a shallow impounded lake: Exploring the influence of floods. Int J Sediment Res. 2024;39:375-85. DOI: 10.1016/j.ijsrc.2024.04.006.
- Ludovisi A, Minozzo M, Pandolfi P, Taticchiet MI. Modelling the horizontal spatial structure of planktonic community in Lake Trasimeno (Umbria, Italy) using multivariate geostatistical methods. Ecol Modelling. 2005;181:247-62. DOI: 10.1016/j.ecolmodel.2004.06.033.
- Bucas M. Distribution patterns and ecological role of the Red Alga Furcellaria Lumbricalis (Hudson) J.V.Lamouroux off the exposed Baltic Sea coast of Lithuania. [PhD Thesis]. Klaipėda 2009. Available from: https://www.ku.lt/uploads/documents/files/jti/studijos/MBucas2004-2009.pdf; Access: 16.12.2024.
- Diaz E, Erlandsson J, McQuaid C. Detecting spatial heterogeneity in intertidal algal functional groups, grazers and their co-variation among shore levels and sites. J Experimental Marine Biol Ecol. 2011;409. DOI: 10.1016/j.jembe.2011.08.013.
- Tapia O, Vilchis MI, Sentíes A, Dreckmann K. Mapping of algae richness using spatial data interpolation. International J Remote Sensing. 2015;XL-7/W3. DOI: 10.5194/isprsarchives-XL-7-W3-1005-2015.
- Buelo C, Carpenter S, Pace MA modeling analysis of spatial statistical indicators of thresholds for algal blooms. Limnology Oceanography Lett. 2018;3. DOI: 10.1002/lol2.10091.
- Serizawa H, Amemiya T, Itoh K. Patchiness in a minimal nutrient - phytoplankton model. J Biosci. 2008;33:391-403. DOI: 10.1007/s12038-008-0059-y.
- Fox JE. Utilising chlorophyll fluorescence to assess the variability of phytoplankton biomass and productivity in the north-west European shelf seas. PhD Thesis. University of Essex; 2018. Available from: https://repository.essex.ac.uk/21546/1/Fox_2017_corrected.pdf; Access: 16.12.2024.
- Kim JS, Seo IW, Baek D. Modeling spatial variability of harmful algal bloom in regulated rivers using a depth-averaged 2D numerical model. J Hydroenviron Res. 2018;20. DOI: 10.1016/j.jher.2018.04.008.
- Pinkerton M, Gall M, Wood S, Zeldis J. Measuring the effects of bivalve mariculture on water quality in northern New Zealand using 15 years of MODIS-Aqua satellite observations. Aquacult Environ Interactions. 2018;10:529-45. Available from: https://www.researchgate.net/publication/328024096_Measuring_the_effects_of_bivalve_mariculture_on_water_quality_in_northern_New_Zealand_using_15_years_of_MODIS-Aqua_satellite_observations; Access: 16.12.2024.
- Son G, Kim D, Kim Y, Lyu S, Kim S. A forecasting method for harmful algal bloom(HAB)-prone regions allowing preemptive countermeasures based only on acoustic doppler current profiler measurements in a large river. Water. 2020;12:3488. DOI: 10.3390/w12123488.
- Doney SC, Glover D, McCue S, Fuentes M. Mesoscale Variability of SeaWiFS Satellite Ocean Color: Global Patterns and Spatial Scales. Available from: https://www.researchgate.net/publication/2409753_Mesoscale_Variability_of_SeaWiFS_Satellite_Ocean_Color_Global_Patterns_and_Spatial_Scales; Access: 03.12.2024.
- Doney SC, Glover D, McCue S, Fuentes M. Mesoscale variability of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite ocean color: Global patterns in spatial scales. J Geophys Res (Oceans). 2003;108. DOI: 10.1029/2001JC000843.
- Wallis A, Doney SC, Glover D, Nelson NB. Characterizing Submesoscale Ocean Color Variability in the Sargasso Sea in the Vicinity of the Bermuda Atlantic Time-series Site (BATS): A Geostatistical Approach. Available from: https://www.researchgate.net/publication/252148091_Characterizing_Submesoscale_Ocean_Color_Variability_in_the_Sargasso_Sea_in_the_Vicinity_of_the_Bermuda_Atlantic_Time-series_Site_BATS_A_Geostatistical_Approach; Stand: 03.12.2024.
- Glover D, Doney SC, Oestreich W, Tullo A. Geostatistical analysis of mesoscale spatial variability and error in SeaWiFS and MODIS/Aqua Global Ocean Color Data. J Geophys Res: Oceans. 2017;123. DOI: 10.1002/2017JC013023.
- Chelton D, Gaube P, Schlax M, Early JJ, Samelson RM. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science. New York. 2011;334:328-32. DOI: 10.1126/science.1208897.
- Gaube P, Chelton D, Strutton P, Behrenfeld MJ. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J Geophys Res: Oceans. 2013;118. DOI: 10.1002/2013JC009027.
- Rohr T, Harrison C, Long MC, Gaube P, Doney SC. The simulated biological response to southern ocean eddies via biological rate modification and physical transport. Global Biogeochem Cycles. 2020;34:e2019GB006385. DOI: 10.1029/2019GB006385.
- Rohr T, Harrison C, Long MC, Gaube P, Doney SC. Eddy‐modified iron, light, and phytoplankton cell division rates in the simulated southern ocean. Global Biogeochem Cycles. 2020;34: e2019GB006380. DOI: 10.1029/2019GB006380.
- Eveleth R, Glover DM, Long MC, Lima ID, Chase AP, Doney SC. Assessing the skill of a high-resolution marine biophysical model using geostatistical analysis of mesoscale ocean chlorophyll variability from field observations and remote sensing. Front Marine Sci. 2021;8. DOI: 10.3389/fmars.2021.612764.
- Smith R, Jones P, Briegleb P, Brayan F, Danabasoglu G, Dennis J, et al. The Parallel Ocean Program (POP) reference manual: Ocean Component Community Climate System Model (CESM). 2010. Available from: https://www2.cesm.ucar.edu/models/cesm1.3/ocean/doc/sci/POPRefManual.pdf. Access: 03.12.2024.
- Fang S, Del Giudice D, Scavia D, Binding CE, Bridgeman TB, Chaffin JD, et al. A space-time geostatistical model for probabilistic estimation of harmful algal bloom biomass and areal extent. Sci Total Environ. 2019;695:133776. DOI: 10.1016/j.scitotenv.2019.133776.
- Stein ML. Space-time covariance functions. J Am Statistical Assoc. 2005; DOI: 10.1198/016214504000000854.
- Sharp SL, Forrest AL, Bouma-Gregson K, Jin Y, Cortes A, Schladow SG. Quantifying scales of spatial variability of cyanobacteria in a large, eutrophic lake using multiplatform remote sensing tools. Front Environ Sci. 2021;9. DOI: 10.3389/fenvs.2021.612934.
- Wynne T, Stumpf R, Tomlinson M, Dyble J. Characterizing a cyanobacterial bloom in Western Lake Erie using satellite imagery and meteorological data. Limnol Oceanography. 2010. DOI: 10.4319/lo.2010.55.5.2025.
- Lunetta RS, Schaeffer BA, Stumpf RP, Keith D, Scott AJ, Murphy MS. Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA. Remote Sensing Environ. 2015;157:24-34. DOI: 10.1016/j.rse.2014.06.008.
- Szatmári G, Kocsis M, Makó A, Pásztor L, Bakacsi Z. Joint spatial modeling of nutrients and their ratio in the sediments of Lake Balaton (Hungary): A multivariate geostatistical approach. Water. 2022;14:361. DOI: 10.3390/w14030361.
- Présing M, Preston T, Takátsy A, Kovács AW, Vörös L, Kenesi G, et al. Phytoplankton nitrogen demand and the significance of internal and external nitrogen sources in a large shallow lake (Lake Balaton, Hungary). Hydrobiologia. 2008;599:87-95. DOI: 10.1007/s10750-007-9191-1.
- Vörös L, Göde PN. Long term changes of phytoplankton in Lake Balaton (Hungary). Int Vereinigung theoretische angewandte Limnologie: Verhandlungen. 1993;25:682-6. DOI: 10.1080/03680770.1992.11900224.
- Sahu S, Sarkar S, Gogoi P, Naskar M. A geostatistical framework predicting zooplankton abundance in a large river: Management implications towards potamoplankton sustainability. Environ Manage. 2023;71. DOI: 10.1007/s00267-023-01784-2.
- Ivanova N. Global overview of the application of the Braun-Blanquet approach in research. Forests. 2024;15:937. DOI: 10.3390/f15060937.