Have a personal or library account? Click to login
Influence of Diffusion Angle on Sediment Concentration in Front Inflow Forebay of Pumping Station Cover

Influence of Diffusion Angle on Sediment Concentration in Front Inflow Forebay of Pumping Station

Open Access
|Oct 2024

References

  1. Zhao JX. An empirical study on emissions trading influence for the enterprise environmental responsibility. Ecol Chem Eng S. 2023;30(2):259-66. DOI: 10.2478/eces-2023-0027.
  2. Li R. Evaluating the development path of manufacturing industry under carbon neutralisation. Ecol Chem Eng S. 2023;30(4):581-93. DOI:10.2478/eces-2023-0042.
  3. Luo C, He Y, Shang Y, Cong X, Ding C, Cheng L, et al. Flow characteristics and anti-vortex in a pump station with laterally asymmetric inflow. Processes. 2022;10:2398. DOI: 10.3390/pr10112398.
  4. Sabouki MM, Bahrainian SS, Behbahani-Nejad M. Numerical investigation of vortex formation in water intake system of a pumping station during low and high tides. SN Appl Sci. 2021;3:1-14. DOI: 10.1007/s42452-020-04048-4.
  5. Zi D, Shen L, Xuan AQ, Wang JF. LES analyses of the air-core vortex in intake flow field of pumping station. IOP Conf Ser: Earth Environ Sci. IOP Publishing. 2019;240:032037. DOI: 10.1088/1755-1315/240/3/032037.
  6. Xu C, Tian J, Liu Z, Wang R, Wang G. Three-dimensional reverse modeling and hydraulic analysis of the intake structure of pumping stations on sediment-laden rivers. Water Resources Manage. 2023;37:537-55. DOI: 10.1007/s11269-022-03385-w.
  7. Urishev B, Artikbekova F, Kuvvatov D, Nosirov F, Kuvatov U. Trajectory of sediment deposition at the bottom of water intake structures of pumping stations. IOP Conf Series: Materials Sci Eng. IOP Publishing. 2021;1030:012137. DOI: 10.1088/1757-899x/1030/1/012137.
  8. Khudair BH. Influent flow rate effect on sewage pump station performance based on organic and sediment loading. J Eng. 2019;25:1-11. DOI: 10.31026/j.eng.2019.09.1.
  9. Zhou J, Zhao M, Wang C, Gao Z. Optimal design of diversion piers of lateral intake pumping station based on orthogonal test. Shock Vibration. 2021;2021:6616456. DOI: 10.1155/2021/6616456.
  10. Zi D, Wang FJ, Yao ZF, Xiao RF, Chen X, He CL. Numerical simulation on rectifying flow in intake system of a pumping station connected with headrace pipe. IOP Conf Series: Earth Environ Sci. IOP Publishing. 2016;49:032004. DOI: 10.1088/1755-1315/49/3/032004.
  11. Luo C, Cheng L, Liu C, Zhou JR, Jin Y. Numerical simulation of flow pattern with sill in the front inflow forebay of pumping station. IOP Conf Series: Earth Environ Sci. IOP Publishing. 2012;15:052006. DOI: 10.1088/1755-1315/15/5/052006.
  12. Shi W, Lv F, Yu X, Wang X, Ni C, Lu W, et al. Influence of partition wall length on inlet flow regime of a pumping station arranged in parallel with a sluice gate. Processes. 2024;12:699. DOI: 10.3390/pr12040699.
  13. Xu B, Xu S, Xia H, Liu J, Shen Y, Xu L, et al. Optimal design of perforated diversion wall based on comprehensive evaluation indicator and response surface method: A case study. Processes. 2023;11:1539. DOI: 10.3390/pr11051539.
  14. Xu B, Liu J, Lu W, Xu L, Xu R. Design and optimization of γ-shaped settlement training wall based on numerical simulation and CCD-response surface method. Processes. 2022;10:1201. DOI: 10.3390/pr10061201.
  15. Xi W, Lu WG, Wang C, Xu B. Optimization of the hollow rectification sill in the forebay of the pump station based on the PSO-GP collaborative algorithm. Shock Vibration. 2021;2021:6618280. DOI: 10.1155/2021/6618280.
  16. Zhou J, Zhao M, Wang C, Gao Z. Influence of different lateral bending angles on the flow pattern of pumping station lateral inflow. Shock Vibration. 2021;2021:6653001. DOI: 10.1155/2021/6653001.
  17. Teaima IR, El-Gamal T. Improving flow performance of irrigation pump station intake. J Appl Water Eng Res. 2017;5:9-21. DOI: 10.1080/23249676.2015.1105160.
  18. Song W, Pang Y, Shi X, Xu Q. Study on the rectification of forebay in pumping station. Mathematical Problems Engineering. 2018;2018:2876980. DOI: 10.1155/2018/2876980.
  19. Zheng X, Zhang P, Zhang W, Yu Y, Zhao Y. Numerical study on the influence of combined rectification facilities on the flow in the forebay of pumping station. Water. 2023;15:3847. DOI: 10.3390/w15213847.
  20. Nasr A, Yang F, Zhang Y, Wang T, Hassan M. Analysis of the flow pattern and flow rectification measures of the side-intake forebay in a multi-unit pumping station. Water. 2021;13:2025. DOI: 10.3390/w13152025.
  21. Li Y, Feng J, Zhu G, Zhou Y, Zhang Y. Evolution of air-entraining vortices in inclined intake pumping stations under low sump water depth condition. Proc Institution Mechanical Engineers. Part E: J Process Mechanical Eng. 2023;09544089231215898. DOI: 10.1177/09544089231215898.
  22. Zheng X, Wang W, Zhang P, Pu Y, Zhao Y. Internal flow characteristics of centrifugal pumps under different startup combination schemes. Water. 2024;16:1087. DOI: 10.3390/w16081087.
  23. Tang Q, Xie W, Jing S, Wang X, Su Z. Experimental and numerical investigation on the mechanical behavior of rock-like material with complex discrete joints. Rock Mechanics Rock Eng. 2024;1-19. DOI: 10.1007/s00603-024-03784-y.
  24. Xu C, Tian J, Wang G, Lian H, Wang R, Hu X. Numerical analysis of water-sediment flow fields within the intake structure of pumping station under different hydraulic conditions. Water. 2024;16:779. DOI: 10.3390/w16050779.
  25. Kartushinsky A, Tisler S, Oliveira JG, Van der Geld CWM. Eulerian-Eulerian modelling of particle-laden two-phase flow. Powder Technol. 2016;301:999-1007. DOI: 10.1016/j.powtec.2016.07.053.
  26. Li L, Xu Y, Ge M, Wang Z, Li S, Zhang J. Numerical investigation of cavitating jet flow field with different turbulence models. Mathematics. 2023;11:3977. DOI: 10.3390/math11183977.
  27. Takizawa K, Bazilevs Y, Tezduyar TE. Isogeometric discretization methods in computational fluid mechanics. Mathematical Models Methods Appl Sci. 2022;32:2359-70. DOI: 10.1142/s0218202522020018.
  28. Liu YY, Yang LM, Shu C, Zhang HW. Three-dimensional high-order least square-based finite difference-finite volume method on unstructured grids. Physics Fluids. 2020;32. DOI: 10.1063/5.0032089.
DOI: https://doi.org/10.2478/eces-2024-0027 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 397 - 409
Published on: Oct 10, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Xinjian Fan, Jiahui Zhang, Wei Yao, Chunhai Dong, Lirong Wang, Hao Tian, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.