References
- Zhao JX. An empirical study on emissions trading influence for the enterprise environmental responsibility. Ecol Chem Eng S. 2023;30(2):259-66. DOI: 10.2478/eces-2023-0027.
- Li R. Evaluating the development path of manufacturing industry under carbon neutralisation. Ecol Chem Eng S. 2023;30(4):581-93. DOI:10.2478/eces-2023-0042.
- Luo C, He Y, Shang Y, Cong X, Ding C, Cheng L, et al. Flow characteristics and anti-vortex in a pump station with laterally asymmetric inflow. Processes. 2022;10:2398. DOI: 10.3390/pr10112398.
- Sabouki MM, Bahrainian SS, Behbahani-Nejad M. Numerical investigation of vortex formation in water intake system of a pumping station during low and high tides. SN Appl Sci. 2021;3:1-14. DOI: 10.1007/s42452-020-04048-4.
- Zi D, Shen L, Xuan AQ, Wang JF. LES analyses of the air-core vortex in intake flow field of pumping station. IOP Conf Ser: Earth Environ Sci. IOP Publishing. 2019;240:032037. DOI: 10.1088/1755-1315/240/3/032037.
- Xu C, Tian J, Liu Z, Wang R, Wang G. Three-dimensional reverse modeling and hydraulic analysis of the intake structure of pumping stations on sediment-laden rivers. Water Resources Manage. 2023;37:537-55. DOI: 10.1007/s11269-022-03385-w.
- Urishev B, Artikbekova F, Kuvvatov D, Nosirov F, Kuvatov U. Trajectory of sediment deposition at the bottom of water intake structures of pumping stations. IOP Conf Series: Materials Sci Eng. IOP Publishing. 2021;1030:012137. DOI: 10.1088/1757-899x/1030/1/012137.
- Khudair BH. Influent flow rate effect on sewage pump station performance based on organic and sediment loading. J Eng. 2019;25:1-11. DOI: 10.31026/j.eng.2019.09.1.
- Zhou J, Zhao M, Wang C, Gao Z. Optimal design of diversion piers of lateral intake pumping station based on orthogonal test. Shock Vibration. 2021;2021:6616456. DOI: 10.1155/2021/6616456.
- Zi D, Wang FJ, Yao ZF, Xiao RF, Chen X, He CL. Numerical simulation on rectifying flow in intake system of a pumping station connected with headrace pipe. IOP Conf Series: Earth Environ Sci. IOP Publishing. 2016;49:032004. DOI: 10.1088/1755-1315/49/3/032004.
- Luo C, Cheng L, Liu C, Zhou JR, Jin Y. Numerical simulation of flow pattern with sill in the front inflow forebay of pumping station. IOP Conf Series: Earth Environ Sci. IOP Publishing. 2012;15:052006. DOI: 10.1088/1755-1315/15/5/052006.
- Shi W, Lv F, Yu X, Wang X, Ni C, Lu W, et al. Influence of partition wall length on inlet flow regime of a pumping station arranged in parallel with a sluice gate. Processes. 2024;12:699. DOI: 10.3390/pr12040699.
- Xu B, Xu S, Xia H, Liu J, Shen Y, Xu L, et al. Optimal design of perforated diversion wall based on comprehensive evaluation indicator and response surface method: A case study. Processes. 2023;11:1539. DOI: 10.3390/pr11051539.
- Xu B, Liu J, Lu W, Xu L, Xu R. Design and optimization of γ-shaped settlement training wall based on numerical simulation and CCD-response surface method. Processes. 2022;10:1201. DOI: 10.3390/pr10061201.
- Xi W, Lu WG, Wang C, Xu B. Optimization of the hollow rectification sill in the forebay of the pump station based on the PSO-GP collaborative algorithm. Shock Vibration. 2021;2021:6618280. DOI: 10.1155/2021/6618280.
- Zhou J, Zhao M, Wang C, Gao Z. Influence of different lateral bending angles on the flow pattern of pumping station lateral inflow. Shock Vibration. 2021;2021:6653001. DOI: 10.1155/2021/6653001.
- Teaima IR, El-Gamal T. Improving flow performance of irrigation pump station intake. J Appl Water Eng Res. 2017;5:9-21. DOI: 10.1080/23249676.2015.1105160.
- Song W, Pang Y, Shi X, Xu Q. Study on the rectification of forebay in pumping station. Mathematical Problems Engineering. 2018;2018:2876980. DOI: 10.1155/2018/2876980.
- Zheng X, Zhang P, Zhang W, Yu Y, Zhao Y. Numerical study on the influence of combined rectification facilities on the flow in the forebay of pumping station. Water. 2023;15:3847. DOI: 10.3390/w15213847.
- Nasr A, Yang F, Zhang Y, Wang T, Hassan M. Analysis of the flow pattern and flow rectification measures of the side-intake forebay in a multi-unit pumping station. Water. 2021;13:2025. DOI: 10.3390/w13152025.
- Li Y, Feng J, Zhu G, Zhou Y, Zhang Y. Evolution of air-entraining vortices in inclined intake pumping stations under low sump water depth condition. Proc Institution Mechanical Engineers. Part E: J Process Mechanical Eng. 2023;09544089231215898. DOI: 10.1177/09544089231215898.
- Zheng X, Wang W, Zhang P, Pu Y, Zhao Y. Internal flow characteristics of centrifugal pumps under different startup combination schemes. Water. 2024;16:1087. DOI: 10.3390/w16081087.
- Tang Q, Xie W, Jing S, Wang X, Su Z. Experimental and numerical investigation on the mechanical behavior of rock-like material with complex discrete joints. Rock Mechanics Rock Eng. 2024;1-19. DOI: 10.1007/s00603-024-03784-y.
- Xu C, Tian J, Wang G, Lian H, Wang R, Hu X. Numerical analysis of water-sediment flow fields within the intake structure of pumping station under different hydraulic conditions. Water. 2024;16:779. DOI: 10.3390/w16050779.
- Kartushinsky A, Tisler S, Oliveira JG, Van der Geld CWM. Eulerian-Eulerian modelling of particle-laden two-phase flow. Powder Technol. 2016;301:999-1007. DOI: 10.1016/j.powtec.2016.07.053.
- Li L, Xu Y, Ge M, Wang Z, Li S, Zhang J. Numerical investigation of cavitating jet flow field with different turbulence models. Mathematics. 2023;11:3977. DOI: 10.3390/math11183977.
- Takizawa K, Bazilevs Y, Tezduyar TE. Isogeometric discretization methods in computational fluid mechanics. Mathematical Models Methods Appl Sci. 2022;32:2359-70. DOI: 10.1142/s0218202522020018.
- Liu YY, Yang LM, Shu C, Zhang HW. Three-dimensional high-order least square-based finite difference-finite volume method on unstructured grids. Physics Fluids. 2020;32. DOI: 10.1063/5.0032089.