Have a personal or library account? Click to login
Sustainable Production of an Iron-Eggshell Nanocomposite and Investigating its Catalytic Potential for Phenol Removal Cover

Sustainable Production of an Iron-Eggshell Nanocomposite and Investigating its Catalytic Potential for Phenol Removal

Open Access
|Oct 2023

References

  1. Hashem T, Ibrahim AH, Wöll C, Alkordi MH. Grafting zirconium-based metal-organic framework UiO-66-NH2 nanoparticles on cellulose fibers for the removal of Cr(VI) ions and methyl orange from water. ACS Appl Nano Materials. 2019;2:5804-8. DOI: 10.1021/acsanm.9b01263.
  2. Luan M, Jing G, Piao Y, Liu D, Jin L. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation. Arabian J Chem. 2017;10:S769-S76. DOI: 10.1016/j.arabjc.2012.12.003.
  3. Borhade A, Kale A. Calcined eggshell as a cost effective material for removal of dyes from aqueous solution. Appl Water Sci. 2017;7:4255-68. DOI: 10.1007/s13201-017-0558-9.
  4. Oulego P, Laca A, Calvo S, Díaz M. Eggshell-supported catalysts for the advanced oxidation treatment of humic acid polluted wastewaters. Water. 2019;12:100. DOI: 10.3390/w12010100.
  5. Mohamed A, Yousef S, Nasser WS, Osman T, Knebel A, Sánchez EPV, et al. Rapid photocatalytic degradation of phenol from water using composite nanofibers under UV. Environ Sci Europe. 2020;32:1-8. DOI: 10.1186/s12302-020-00436-0.
  6. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today. 2009;147:1-59. DOI: 10.1016/j.cattod.2009.06.018.
  7. Aboamera NM, Mohamed A, Salama A, Osman T, Khattab A. Characterization and mechanical properties of electrospun cellulose acetate/graphene oxide composite nanofibers. Mechanics Adv Materials Structures. 2019;26:765-9. DOI: 10.1080/15376494.2017.1410914.
  8. Damjanović L, Rakić V, Rac V, Stošić D, Auroux A. The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents. J Hazard Materials. 2010;184:477-84. DOI: 10.1016/j.jhazmat.2010.08.059.
  9. Mohammadi S, Kargari A, Sanaeepur H, Abbassian K, Najafi A, Mofarrah E. Phenol removal from industrial wastewaters: a short review. Desalin Water Treatment. 2015;53:2215-34. DOI: 10.1080/19443994.2014.883327.
  10. Hussain A, Dubey SK, Kumar V. Kinetic study for aerobic treatment of phenolic wastewater. Water Resources Industry. 2015;11:81-90. DOI: 10.1016/j.wri.2015.05.002.
  11. Rana AG, Minceva M. Analysis of photocatalytic degradation of phenol with exfoliated graphitic carbon nitride and light-emitting diodes using response surface methodology. Catalysts. 2021;11:898. DOI: 10.3390/catal11080898.
  12. Choquette-Labbé M, Shewa WA, Lalman JA, Shanmugam SR. Photocatalytic degradation of phenol and phenol derivatives using a nano-TiO2 catalyst: Integrating quantitative and qualitative factors using response surface methodology. Water. 2014;6:1785-806. DOI: 10.3390/w6061785.
  13. Ramírez EEP, de la Luz Asunción M, Rivalcoba VS, Hernández ALM, Santos CV. Removal of Phenolic Compounds from Water by Adsorption and Photocatalysis. Intech Open; 2017. DOI: 10.5772/66895.
  14. Aslam Z, Qaiser M, Ali R, Abbas A, Zarin S. Al2O3/MnO2/CNTs nanocomposite: Synthesis, characterization and phenol adsorption. Fullerenes Nanotubes Carbon Nanostructures. 2019. DOI: 10.1080/1536383x.2019.1622528.
  15. Jaber WS, Alwared AI. Removal of oil emulsion from aqueous solution by using Ricinus communis leaves as adsorbent. SN Appl Sci. 2019;1:1-12. DOI: 10.1007/s42452-019-0970-x.
  16. Alwared AI, Al-Musawi TJ, Muhaisn LF, Mohammed AA. The biosorption of reactive red dye onto orange peel waste: a study on the isotherm and kinetic processes and sensitivity analysis using the artificial neural network approach. Environ Sci Pollut Res. 2021;28:2848-59. DOI: 10.1007/s11356-020-10613-6.
  17. Girish C, Ramachandra Murty V. Adsorption of phenol from aqueous solution using Lantana camara, forest waste: kinetics, isotherm, and thermodynamic studies. Int Scholarly Res Notices. 2014;2014. DOI: 10.1155/2014/201626.
  18. Issabayeva G, Hang SY, Wong MC, Aroua MK. A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents. Rev Chem Eng. 2018;34:855-73. DOI: 10.1515/revce-2017-0007.
  19. Fathali Z, Rezaei S, Faramarzi MA, Habibi-Rezaei M. Catalytic phenol removal using entrapped cross-linked laccase aggregates. Int J Biol Macromol. 2019;122:359-66. DOI: 10.1016/j.ijbiomac.2018.10.147.
  20. Ok YS, Lee SS, Jeon W-T, Oh S-E, Usman AR, Moon DH. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environ Geochem Health. 2011;33:31-9. DOI: 10.1007/s10653-010-9362-2 .
  21. Kakavandi B, Jahangiri-Rad M, Rafiee M, Esfahani AR, Babaei AA. Development of response surface methodology for optimization of phenol and p-chlorophenol adsorption on magnetic recoverable carbon. Microporous Mesoporous Materials. 2016;231:192-206. DOI: 10.1016/j.micromeso.2016.05.033.
  22. Almessiere MA, Slimani Y, Güngüneş H, Ali S, Manikandan A, Ercan I, et al. Magnetic attributes of NiFe2O4 nanoparticles: influence of dysprosium ions (Dy3+) substitution. Nanomaterials. 2019;9:820. DOI: 10.3390/nano9060820.
  23. Mhemid RKS, Saeed LI, Shihab MS. Decontamination of metronidazole antibiotic - A novel nanocomposite-based strategy. J Ecol Eng. 2023;24:246-59. DOI: 10.12911/22998993/168500
  24. Mhemid RKS, Salman MS, Mohammed NA. Comparing the efficiency of N-doped TiO2 and commercial TiO2 as photo catalysts for amoxicillin and ciprofloxacin photo-degradation under solar irradiation. J Environ Sci Health, Part A. 2022;57:813-29. DOI: 10.1080/10934529.2022.2117960.
  25. Thilakan D, Patankar J, Khadtare S, Wagh NS, Lakkakula J, El-Hady KM, et al. Plant-derived iron nanoparticles for removal of heavy metals. Int J Chem Eng. 2022;2022. DOI: 10.1155/2022/1517849.
  26. Awwad AM, Salem NM, Aqarbeh MM, Abdulaziz FM. Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation. Chem Int. 2020;6:42-8. DOI: 10.5281/zenodo.3243157.
  27. Awwad AM, Amer MW, Salem NM, Abdeen AO. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chem Int. 2020;6:151-9. DOI: 10.5281/zenodo.3559520.
  28. Mekonnen A, Degu Y, Carlson R. Appraisal of solvent system effect on bioactivity profiling of Cordia africana stem bark extracts. Chem Int. 2020;6:1-10. DOI: 10.5281/zenodo.2574105.
  29. Noreen S, Ismail S, Ibrahim SM, Kusuma HS, Nazir A, Yaseen M, et al. ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics, equilibrium and thermodynamics studies. Zeit Physikalische Chemie. 2021;235:1055-75. DOI: 10.1515/zpch-2019-1599.
  30. Ge M, Wang X, Du M, Liang G, Hu G, SM JA. Adsorption analyses of phenol from aqueous solutions using magadiite modified with organo-functional groups: Kinetic and equilibrium studies. Materials. 2018;12:96. DOI: 10.3390/ma12010096.
  31. Sulaiman FA, Alwared AI. Ability of response surface methodology to optimize photocatalytic degradation of amoxicillin from aqueous solutions using immobilized TiO2/sand. J Ecol Eng. 2022;23. DOI: 10.12911/22998993/147318.
  32. Khoshnamvand N, Kord Mostafapour F, Mohammadi A, Faraji M. Response surface methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/UV). AMB Express. 2018;8:1-9. DOI: 10.1186/s13568-018-0579-2.
  33. Oguaghamba O, Onyia M. Modified and generalized full cubic polynomial response surface methodology in engineering mixture design. Nigerian J Technol. 2019;38:52-9. DOI: 10.4314/njt.v38i1.8.
  34. Sarabia LA, Ortiz MC, Sánchez MS. Response Surface Methodology. 2020;287-326. DOI: 10.1016/B978-044452701-1.00083-1.
  35. Helmiyati H, Masriah I. Preparation of cellulose/CaO-Fe2O3 nanocomposites as catalyst for fatty acid methyl ester production. AIP Conf Proc: AIP Publishing LLC. 2019. p. 020062. DOI: 10.1063/1.5132489.
  36. Lee S, Lee T, Kim D. Adsorption of hydrogen sulfide from gas streams using the amorphous composite of α-FeOOH and activated carbon powder. Ind Eng Chem Res. 2017;56:3116-22. DOI: 10.1021/acs.iecr.6b04747.
  37. Torit J, Phihusut D. Phosphorus removal from wastewater using eggshell ash. Environ Sci Pollut Res. 2019;26:34101-9. DOI: 10.1007/s11356-018-3305-3.
  38. Bwatanglang IB, Magili ST, Kaigamma I. Adsorption of phenol over bio-based silica/calcium carbonate (CS-SiO2/CaCO3) nanocomposite synthesized from waste eggshells and rice husks. Peer J Phys Chem. 2021;3:e17. DOI: 10.7717/peerj-pchem.17.
  39. Basaleh AA, Al-Malack MH, Saleh TA. Metal removal using chemically modified eggshells: preparation, characterization, and statistical analysis. Desalin Water Treat. 2019;173:313-30. DOI: 10.5004/dwt.2020.24690.
  40. Ihli J, Wong WC, Noel EH, Kim Y-Y, Kulak AN, Christenson HK, et al. Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nature Commun. 2014;5:1-10. DOI: 10.1038/ncomms4169.
  41. Hajji S, Mzoughi N. Kinetic, equilibrium and thermodynamic studies for the removal of lead ions from aqueous solutions by using low cost adsorbents: A comparative study. IOSR J Appl Chem. 2018;11:12-24. DOI: 10.9790/5736-1107011224.
  42. Krumins J, Klavins M, Seglins V, Kaup E. Comparative study of peat composition by using FT-IR spectroscopy. Rigas Tehniskas Universitates Zinatniskie Raksti. 2012;26:106.
  43. Habte L, Shiferaw N, Mulatu D, Thenepalli T, Chilakala R, Ahn JW. Synthesis of nano-calcium oxide from waste eggshell by sol-gel method. Sustainability. 2019;11:3196. DOI: 10.3390/su11113196.
  44. Du H, Amstad E. Water: How does it influence the CaCO3 formation? Angew Chemie Int Ed. 2020;59:1798-816. DOI: 10.1002/anie.201903662.
  45. Sorokhaibam LG, Ahmaruzzaman M. Phenolic Wastewater Treatment: Development and Applications of New Adsorbent Materials. Butterworth-Heinemann: Oxford, England; 2014. ISBN: 9780444634030.
  46. Chaker H, Ameur N, Saidi-Bendahou K, Djennas M, Fourmentin S. Modeling and Box-Behnken design optimization of photocatalytic parameters for efficient removal of dye by lanthanum-doped mesoporous TiO2. J Environ Chem Eng. 2021;9:104584. DOI: 10.1016/j.jece.2020.104584.
  47. Tetteh EK, Obotey Ezugbe E, Rathilal S, Asante-Sackey D. Removal of COD and SO42 from oil refinery wastewater using a photo-catalytic system - comparing TiO2 and zeolite efficiencies. Water. 2020;12:214. DOI: 10.3390/w12010214.
  48. Dehghan A, Zarei A, Jaafari J, Shams M, Khaneghah AM. Tetracycline removal from aqueous solutions using zeolitic imidazolate frameworks with different morphologies: a mathematical modeling. Chemosphere. 2019;217:250-60. DOI: 10.1016/j.chemosphere.2018.10.166.
  49. De la Luz-Asunción M, Sánchez-Mendieta V, Martínez-Hernández A, Castaño V, Velasco-Santos C. Adsorption of phenol from aqueous solutions by carbon nanomaterials of one and two dimensions: Kinetic and equilibrium studies. J Nanomaterials. 2015;2015. DOI: 10.1155/2015/405036.
  50. Khare P, Kumar A. Removal of phenol from aqueous solution using carbonized Terminalia chebula-activated carbon: process parametric optimization using conventional method and Taguchi’s experimental design, adsorption kinetic, equilibrium and thermodynamic study. Appl Water Sci. 2012;2:317-26. DOI: 10.1007/s13201-012-0047-0.
  51. Gundogdu A, Duran C, Senturk HB, Soylak M, Ozdes D, Serencam H, et al. Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: equilibrium, kinetic, and thermodynamic study. J Chem Eng Data. 2012;57:2733-43. DOI: 10.1021/je300597u.
  52. Lim AP, Aris AZ. A review on economically adsorbents on heavy metals removal in water and wastewater. Rev Environ Sci Bio/Technol. 2014;13:163-81. DOI: 10.1007/s11157-013-9330-2.
  53. Hairuddin MN, Mubarak NM, Khalid M, Abdullah EC, Walvekar R, Karri RR. Magnetic palm kernel biochar potential route for phenol removal from wastewater. Environ Sci Pollut Res. 2019;26:35183-97. DOI: 10.1007/s11356-019-06524-w.
  54. Djebbar M, Djafri F, Bouchekara M, Djafri A. Adsorption of phenol on natural clay. Appl Water Sci. 2012;2:77-86. DOI: 10.1007/s13201-012-0031-8.
  55. Khoshtinat F, Tabatabaie T, Ramavandi B, Hashemi S. Application of pier waste sludge for catalytic activation of proxy-monosulfate and phenol elimination from a petrochemical wastewater. Environ Sci Pollut Research. 2022;46:69462-71. DOI: 10.1007/s11356-022-20690-4.
  56. Bousba S, Meniai AH. Removal of phenol from water by adsorption onto sewage sludge based adsorbent. Chem Eng Trans. 2014;40:235-40. DOI: 10.3303/CET1440040.
DOI: https://doi.org/10.2478/eces-2023-0040 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 387 - 403
Published on: Oct 5, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Noor A. Mohammed, Liqaa I. Saeed, Rasha Khalid Sabri Mhemid, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.