Have a personal or library account? Click to login
On the Influence of the Nugget Effect on the Efficiency of Magnetometric Soil Surface Screening Cover

On the Influence of the Nugget Effect on the Efficiency of Magnetometric Soil Surface Screening

Open Access
|Jan 2023

References

  1. [1] Dankoub Z, Ayoubi S, Khademi H, Gao Lu SG. Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan region, Central Iran. Pedosphere. 2012;22(1):33-47. DOI: 10.1016/S1002-0160(11)60189-6.10.1016/S1002-0160(11)60189-6
  2. [2] Zolfaghari Z, Ayoubi S, Mosaddeghi MR. Spatial variability of some soil shrinkage indices in hilly calcareous region of western Iran. Soil Tillage Res. 2015;150:180-91. DOI: 10.1016/j.still.2015.01.016.10.1016/j.still.2015.01.016
  3. [3] Webster R, Oliver M. Geostatistics for Environmental Scientists. Chichiester: Wiley; 2007. ISBN: 9780470028582.10.1002/9780470517277
  4. [4] Zawadzki J. Metody geostatystyczne dla kierunków przyrodniczych i technicznych (Geostatistical methods for natural and technical directions). Warszawa: Ofic Wyd Politechniki Warszawskiej; 2011. ISBN: 9788372079534.
  5. [5] Cressie N, Hawkins DM. Robust estimation of the variogram: I. J Int Assoc Mathematical Geol. 1980; 12:115-25. DOI: 10.1007/BF01035243.10.1007/BF01035243
  6. [6] Zawadzki J, Fabijańczyk P. Use of variograms for field magnetometry analysis in Upper Silesia Industrial Region. Stud Geophys Geod. 2007;51:535-50. DOI: 10.1007/s11200-007-0031-6.10.1007/s11200-007-0031-6
  7. [7] McBratney A, Odeh I, Bishop T, Dunbar M, Shatar T. An overview of pedometric techniques for use in soil survey. Geoderma. 2000; 97:293-327. DOI: 10.1016/S0016-7061(00)00043-4.10.1016/S0016-7061(00)00043-4
  8. [8] Hengl T. A practical guide to geostatistical mapping of environmental variables, EUR 22904 EN. Scientific and Technical Research series: Office for Official Publications of the European Communities. 2007. ISBN: 9789279069048.
  9. [9] Woodcock CE, Strahler AH, Jupp DLB. The use of semivariograms in remote sensing: I. Scene models and simulated images. Remote Sensing of Environment. 1988;25:323-48. DOI: 10.1016/0034-4257(88)90108-3.10.1016/0034-4257(88)90108-3
  10. [10] Woodcock CE, Strahler AH, Jupp DLB. The use of semivariograms in remote sensing: II. Real digital images. Remote Sensing of Environment. 1988;25:349-79. DOI: 10.1016/0034-4257(88)90109-5.10.1016/0034-4257(88)90109-5
  11. [11] Goovaerts P. Ordinary cokriging revisited. Math Geol. 1998;30(1):22-42. DOI: 10.1023/A:1021757104135.10.1023/A:1021757104135
  12. [12] McBratney AB, and Webster R. Choosing function for semivariograms of soil properties and fitting them to sampling estimates. J Soil Sci. 1986;37,617-39. DOI: 10.1111/j.1365-2389.1986.tb00392.x.10.1111/j.1365-2389.1986.tb00392.x
  13. [13] Scull P, Franklin J, Chadwick OA, McArthur D. Predictive soil mapping: a review. Progress Physical Geography. 2003;27:171-97. DOI: 10.1191/0309133303pp366ra.10.1191/0309133303pp366ra
  14. [14] Hengl T, Heuvelink G, Stein AAA. Generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma. 2004;122:75-93. DOI: 10.1016/j.geoderma.2003.08.018.10.1016/j.geoderma.2003.08.018
  15. [15] Journel AG. Nonparametric estimation of spatial distributions. J Int Assoc Math Geol. 1983;15(3):445-68. DOI: 10.1007/bf01031292.10.1007/BF01031292
  16. [16] Fabijańczyk P, Zawadzki J, Magiera T. Magnetometric assessment of soil contamination in problematic area using empirical Bayesian and indicator kriging: A case study in Upper Silesia, Poland. Geoderma. 2017;308:69-77. DOI: 10.1016/j.geoderma.2017.08.029.10.1016/j.geoderma.2017.08.029
  17. [17] Isaaks EH. Srivastava RM. Appl Geostatistics. New York: Oxford University; 1998. ISBN: 9780196050134.
  18. [18] Oliver MA, Webster R, A tutorial guide to geostatistics: computing and modelling variograms and kriging. Catena. 2014;113:56-69. DOI: 10.1016/j.catena.2013.09.006.10.1016/j.catena.2013.09.006
  19. [19] Fürst Ch, Lorz C, Makeschin F. Testing a soil magnetometry technique in a highly polluted industrial region in north-eastern Germany. Water Air Soil Pollut. 2009;202(1-4):33-43. DOI: 10.1007/s11270-008-9956-9.10.1007/s11270-008-9956-9
  20. [20] Fürst C, Lorz C, Zirlewagen D. Testing the indicative value of magnetic susceptibility measurements for concluding on site potentials and risks provoked by fly ash deposition. Environ Manage. 2010;46:894-907. DOI: 10.1007/s00267-010-9572-5.10.1007/s00267-010-9572-520936281
  21. [21] Fürst C, Zirlewage D, Lorz, C. Regionalization of magnetic susceptibility measurements based on a multiple regression approach. Water Air Soil Pollut. 2010;208(1-4):129-51. DOI: 10.1007/s11270-009-0154-1.10.1007/s11270-009-0154-1
  22. [22] Magiera T, Strzyszcz Z, Kapička A, Petrovsky E. Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma. 2006;130:299-311. DOI: 10.1016/j.geoderma.2005.02.002.10.1016/j.geoderma.2005.02.002
  23. [23] Karimi R, Ayoubi S, Jalalian A, Sheikh-Hosseini AR, Afyuni M. Relationships between magnetic susceptibility and heavy metals in urban topsoils in the arid region of Isfahan, central Iran. J Appl Geophysics. 2011;74(1):1-7. DOI: 10.1016/j.jappgeo.2011.02.009.10.1016/j.jappgeo.2011.02.009
  24. [24] Ayoubi S, Jabbari M, Khademi H. Multiple linear modeling between soil properties, magnetic susceptibility and heavy metals in various land uses. Modeling Earth Systems Environ. 2018;4(2):579-89. DOI: 10.1007/s40808-018-0442-0.10.1007/s40808-018-0442-0
  25. [25] Vodyanitskii YN, Shoba SA. Magnetic susceptibility as an indicator of heavy metal contamination of urban soils. Moscow Univ Soil Sci Bull. 2015;70(1):10-6. DOI: 10.3103/S014768741501007X.10.3103/S014768741501007X
  26. [26] Łukasik A, Magiera T, Lasota J, Błońska E. Background value of magnetic susceptibility in forest topsoil: Assessment on the basis of studies conducted in forest preserves of Poland. Geoderma. 2016;264:140-9. DOI: 10.1016/j.geoderma.2015.10.009.10.1016/j.geoderma.2015.10.009
  27. [27] Łukasik A, Szuszkiewicz M, Magiera T. Impact of artifacts on topsoil magnetic susceptibility enhancement in urban parks of the Upper Silesian conurbation datasets. Soils Sediments. 2015;15:1836-46. DOI: 10.1007/s11368-014-0966-5.10.1007/s11368-014-0966-5
  28. [28] Spiteri C, Kalinski V, Rosler W, Hoffman V, Appel E. Magnetic screening of pollution hotspots in the Lausitz Area, Eastern Germany: Correlation analysis between magnetic proxies and heavy metal concentration in soil. Environ Geol. 2005;49:1-9. DOI: 10.1007/s00254-005-1271-9.10.1007/s00254-005-1271-9
  29. [29] Dearing JA. Environmental Magnetic Susceptibility: Using the Bartington MS2 System. Bartington Instruments. UK. 1999. ISBN: 0952340909.
  30. [30] Zawadzki J, Magiera T, Fabijańczyk P. Geostatistical evaluation of magnetic indicators of forest soil contamination by heavy metals. Stud Geophys Geod. 2009;53:133-49. DOI: 10.1007/s11200-009-0008-8.10.1007/s11200-009-0008-8
  31. [31] R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria; 2020. Available from: https://www.R-project.org/.
  32. [32] Pebesma EJ. Multivariable geostatistics in S: the gstat package. Computers Geosci. 2004;30:683-91. DOI: 10.1016/j.cageo.2004.03.012.10.1016/j.cageo.2004.03.012
  33. [33] Zawadzki J, Fabijańczyk P, Magiera T, Rachwał M. Micro-scale spatial correlation of magnetic susceptibility in soil profile in forest located in an industrial area. Geoderma. 2015;249:61-8. DOI: 10.1016/j.geoderma.2015.02.008.10.1016/j.geoderma.2015.02.008
  34. [34] Liu XM, Xu JM, Zhang MK, Huang JH, Shi JC, Yu XF. Application of geostatistics and GIS technique to characterize spatial variabilities of bioavailable micronutrient in paddy soils. Environ Geol. 2004;46:189-94. DOI: 10.1007/s00254-004-1025-0.10.1007/s00254-004-1025-0
  35. [35] Badawy W, Frontasyeva MV, Ibrahim M. Vertical distribution of major and trace elements in a soil profile from the Nile Delta, Egypt. Ecol. Chem Eng S. 2020;27(2):281-94. DOI: 10.2478/eces-2020-0018.10.2478/eces-2020-0018
  36. [36] Usowicz B, Lipiec J Spatial variability of saturated hydraulic conductivity and its links with other soil properties at the regional scale. Sci Rep. 2021;11:8293. DOI: 10.1038/s41598-021-86862-3.10.1038/s41598-021-86862-3805026733859221
  37. [37] Western AW, Blöschl G, Grayson RB. How well do indicator variograms capture the spatial connectivity of soil moisture? Hydrolog Processes. 1998;12(12):1851-68. DOI: 10.1002/(SICI)1099-1085(19981015).10.1002/(SICI)1099-1085(19981015)12:12<1851::AID-HYP670>3.0.CO;2-P
DOI: https://doi.org/10.2478/eces-2022-0038 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 525 - 535
Published on: Jan 14, 2023
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Jarosław Zawadzki, Piotr Fabijańczyk, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.