Have a personal or library account? Click to login
Nitrogen Removal and Sludge Reduction in Anoxic-Aerobic Sequencing Batch Reactor with Alkaline-H2O2 Disintegration Cover

Nitrogen Removal and Sludge Reduction in Anoxic-Aerobic Sequencing Batch Reactor with Alkaline-H2O2 Disintegration

By: Engin Gürtekin  
Open Access
|Jan 2023

References

  1. [1] Liu Y. Chemically reduced excess sludge production in activated sludge process. Chemosphere. 2003;50:1-7. DOI: 10.1016/S0045-6535(02)00551-9.10.1016/S0045-6535(02)00551-912656222
  2. [2] Li P, Li H, Li J, Guo X, Liu J, Xiao B. Evaluation of sludge reduction of three metabolic uncouplers in laboratory-scale anaerobic-anoxic-oxic process. Bioresour Technol. 2016;221:31-6. DOI: 10.1016/j.biortech.2016.09.019.10.1016/j.biortech.2016.09.01927639221
  3. [3] Niu T, Zhou Z, Ren W, Jiang LM, Li B, Wei H, et al. Effects of potassium peroxymonosulfate on disintegration of waste sludge and properties of extracellular polymeric substances. Int Biodeterior Biodegrad. 2016;106:170-7. DOI: 10.1016/j.ibiod.2015.10.021.10.1016/j.ibiod.2015.10.021
  4. [4] Ferrentino R, Merzari F, Andreottola G. Optimisation of Fe2+/H2O2 ratio in Fenton process to increase dewaterability and solubilisation of sludge. Environ Technol. 2020;41:2946-54. DOI: 10.1080/09593330.2019.1589583.10.1080/09593330.2019.158958330817238
  5. [5] Gondek K, Mierzwa-Hersztek M, Kopeć M, Spałek, I. Compost produced with addition of sewage sludge as a source of Fe and Mn for plants. Ecol Chem Eng S. 2021;28:259-75. DOI: 10.2478/eces-2021-0019.10.2478/eces-2021-0019
  6. [6] Yang SS, Guo WQ, Cao GL, Zheng HS, Ren NQ. Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment. Bioresour Technol. 2012;124:347-54. DOI: 10.1016/j.biortech.2012.08.007.10.1016/j.biortech.2012.08.00722995165
  7. [7] Romero-Pareja PM, Aragon CA, Quiroga JM, Coello MD. Evaluation of a biological wastewater treatment system combining an OSA process with ultrasound for sludge reduction. Ultrason Sonochem. 2017;36:336-42. DOI: 10.1016/j.ultsonch.2016.12.006.10.1016/j.ultsonch.2016.12.00628069218
  8. [8] Ma H, Zhang S, Lu X, Xi B, Guo X, Wang H, et al. Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment. Bioresour Technol. 2012;116:441-7. DOI: 10.1016/j.biortech.2012.03.091.10.1016/j.biortech.2012.03.09122522015
  9. [9] Feng XC, Guo WQ, Chen C, Yang SS, Jin WB, Ren NQ, et al. Treatability study of 3, 3′, 4′, 5-tetrachlorosalicylanilide (TCS) combined with 2, 4, 6-trichlorophenol (TCP) to reduce excess sludge production in a sequence batch reactor. Bioresour Technol. 2013;143:642-6. DOI: 10.1016/j.biortech.2013.05.119.10.1016/j.biortech.2013.05.11923856019
  10. [10] Karlikanovaite-Balikci A, Yagci N. Evaluation of sludge reduction in an oxic-settling-anoxic system operated with step feeding regime for nutrient removal and fed with real domestic wastewater. J Environ Manage. 2019;243:385-92. DOI: 10.1016/j.jenvman.2019.05.042.10.1016/j.jenvman.2019.05.04231103684
  11. [11] Datta T, Liu Y, Goel R. Evaluation of simultaneous nutrient removal and sludge reduction using laboratory scale sequencing batch reactors. Chemosphere. 2009;76:697-705. DOI: 10.1016/j.chemosphere.2009.02.040.10.1016/j.chemosphere.2009.02.04019409599
  12. [12] Mees JBR, Gomes SD, Hasan SDM, Gomes BM, Vilas Boas MA. Nitrogen removal in a SBR operated with and without pre-denitrification: effect of the carbon: nitrogen ratio and the cycle time. Environ Technol. 2014;35:115-23. DOI: 10.1080/09593330.2013.816373.10.1080/09593330.2013.81637324600848
  13. [13] Liu Q, Singh VP, Fu Z, Wang J, Hu L. An anoxic-aerobic system for simultaneous biodegradation of phenol and ammonia in a sequencing batch reactor. Environ Sci Pollut Res. 2017;24:11789-99. DOI: 10.1007/s11356-017-8840-9.10.1007/s11356-017-8840-928342078
  14. [14] Cui R, Jahng D. Nitrogen control in AO process with recirculation of solubilized excess sludge. Water Res. 2004;38:1159-72. DOI: 10.1016/j.watres.2003.11.013.10.1016/j.watres.2003.11.01314975649
  15. [15] Xu R, Zhang Q, Tong J, Wei Y, Fan Y. Internal carbon source from sludge pretreated by microwave-H2O2 for nutrient removal in A2/O-membrane bioreactors. Environ Technol. 2015;36:827-36. DOI: 10.1080/09593330.2014.963694.10.1080/09593330.2014.96369425263108
  16. [16] Gao Y, Peng Y, Zhang J, Wang S, Guo J, Ye L. Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A2O process. Bioresour Technol. 2011;102:4091-7. DOI: 10.1016/j.biortech.2010.12.051.10.1016/j.biortech.2010.12.05121232933
  17. [17] Yang S, Guo W, Chen Y, Zhou X, Zheng H, Feng X, Yin R, Ren N. Simultaneous nutrient removal and reduction in sludge from sewage waste using an alternating anaerobic-anoxic-microaerobic-aerobic system combining ozone/ultrasound technology. RSC Adv. 2014;4:52892-7. DOI: 10.1039/C4RA05762G.10.1039/C4RA05762G
  18. [18] Zhang Y, Lu G, Zhang H, Li F, Li L. Enhancement of nitrogen and phosphorus removal, sludge reduction and microbial community structure in an anaerobic/anoxic/oxic process coupled with composite ferrate solution disintegration. Environ Res. 2020;190:110006. DOI: 10.1016/j.envres.2020.110006.10.1016/j.envres.2020.11000632784019
  19. [19] Ren H, Wang Y, Wei Z, Liu P, Wang B. Excess sludge conditioning with ultrasound/ozone and its effect on the anaerobic anoxic oxic process in a municipal wastewater treatment plant. Process Saf Environ Prot. 2020;140:170-7. DOI: 10.1016/j.psep.2020.04.052.10.1016/j.psep.2020.04.052
  20. [20] He Z, Han W, Zhou X, Jin W, Liu W, Gao S, et al. Effect of on-site sludge reduction and wastewater treatment based on electrochemical-A/O combined process. Water. 2021;13:941. DOI: 10.3390/w13070941.10.3390/w13070941
  21. [21] Kim DH, Jeong E, Oh SE, Shin H. Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration. Water Res. 2010;44:3093-100. DOI: 10.1016/j.watres.2010.02.032.10.1016/j.watres.2010.02.03220303565
  22. [22] Zhang W, Xiao B, Li Y, Liu Y, Guo X. Effects of return sludge alkaline treatment on sludge reduction in laboratory-scale anaerobic-anoxic-oxic process. J Biotechnol. 2018;285:1-5. DOI: 10.1016/j.jbiotec.2018.08.018.10.1016/j.jbiotec.2018.08.01830170105
  23. [23] Kim TH, Lee SR, Nam YK, Yang J, Park C, Lee M. Disintegration of excess activated sludge by hydrogen peroxide oxidation. Desalination. 2009;246:275-84. DOI: 10.1016/j.desal.2008.06.023.10.1016/j.desal.2008.06.023
  24. [24] Guan R, Yuan X, Wu Z, Jiang L, Li Y, Zeng G. Principle and application of hydrogen peroxide based advanced oxidation processes in activated sludge treatment: A review. Chem Eng J. 2018;339:519-30. DOI: 10.1016/j.cej.2018.01.153.10.1016/j.cej.2018.01.153
  25. [25] Zeng RJ, Lemaire R, Yuan Z, Keller J. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnol Bioeng. 2003;84:170-8. DOI: 10.1002/bit.10744.10.1002/bit.1074412966573
  26. [26] APHA. Standard Methods for Water and Wastewater Examination. 22th ed. Washington: Amer Public Health Assn. 2012. ISBN: 9780875530130.
  27. [27] Li Y, Yuan X, Wu Z. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process. Chem Eng J. 2016;303:636-45. DOI: 10.1016/j.cej.2016.06.041.10.1016/j.cej.2016.06.041
  28. [28] Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350-6. DOI: 10.1021/ac60111a017.10.1021/ac60111a017
  29. [29] Lowry OH, Rosebrough, NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-75. DOI: 10.1016/s0021-9258(19)52451-6.10.1016/S0021-9258(19)52451-6
  30. [30] Henze M, Holm Kristensen G, Strube R. Rate-capacity characterization of wastewater for nutrient removal processes. Water Sci Technol. 1994;29:101-7. DOI: 10.2166/wst.1994.0318.10.2166/wst.1994.0318
  31. [31] Yoon SH, Kim HS, Lee S. Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production. Process Biochem. 2004;39:1923-9. DOI: 10.1016/j.procbio.2003.09.023.10.1016/j.procbio.2003.09.023
  32. [32] Boehler M, Siegrist H. Potential of activated sludge ozonation. Water Sci Technol. 2007;55:181-7. DOI: 10.2166/wst.2007.407.10.2166/wst.2007.40717674846
  33. [33] Lv XM, Song JS, Li J, Zhai K. Reduction of excess sludge in a sequencing batch reactor by lysis-cryptic growth using quick lime for disintegration under low temperature. Environ Technol. 2017;38:1835-42. DOI: 10.1080/09593330.2016.1238514.10.1080/09593330.2016.123851427691718
  34. [34] Zhang Y, Meng C, He Y, Wang X, Xue G. Influence of cell lysis by Fenton oxidation on cryptic growth in sequencing batch reactor (SBR): Implication of reducing sludge source discharge. Sci Total Environ. 2021;148042. DOI: 10.1016/j.scitotenv.2021.148042.10.1016/j.scitotenv.2021.14804234323827
  35. [35] Zubrowska-Sudol M, Walczak J. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge. Water Res. 2015;76:10-8. DOI: 10.1016/j.watres.2015.02.041.10.1016/j.watres.2015.02.04125776916
  36. [36] Salehiziri M, Amini Rad H, Novak JT. An integrated approach to lysis-cryptic growth (sludge ozonation) and sequencing batch reactor coupled to an anaerobic side-stream reactor (SBR-ASSR): Performance and characteristics. Ozone: Sci Eng. 2019;41:508-20. DOI: 10.1080/01919512.2019.1575182.10.1080/01919512.2019.1575182
  37. [37] An Y, Zhou Z, Yao J, Niu T, Qiu Z, Ruan, D, et al. Sludge reduction and microbial community structure in an anaerobic/anoxic/oxic process coupled with potassium ferrate disintegration. Bioresour Technol. 2017;245:954-61. DOI: 10.1016/j.biortech.2017.09.023.10.1016/j.biortech.2017.09.02328946196
  38. [38] Banu JR, Kavitha S, Kannah RY, Varjani S, Gunasekaran M. Mild hydrogen peroxide interceded bacterial disintegration of waste activated sludge for efficient biomethane production. Sci Total Environ. 2022;817:152873. DOI: 10.1016/j.scitotenv.2021.152873.10.1016/j.scitotenv.2021.15287334998769
  39. [39] Uan DK, Yeom IT, Arulazhagan P, Rajesh Banu J. Effects of sludge pretreatment on sludge reduction in a lab-scale anaerobic/anoxic/oxic system treating domestic wastewater. Int J Environ Sci Technol. 2013;10:495-502. DOI: 10.1007/s13763-012-0120-0.10.1007/s13762-012-0120-0
  40. [40] Yuan D, Zhou X, Jin W, Han W, Chi H, Ding W, et al. Effects of the combined utilization of ultrasonic/hydrogen peroxide on excess sludge destruction. Water. 2021;13:266. DOI: 10.3390/w13030266.10.3390/w13030266
  41. [41] Sun LP, Lin YJ, Shi CY, Wang SQ, Luo WX, Wang M. Effects of interchange ratio on sludge reduction and microbial community structures in an anaerobic/anoxic/oxic process with combined anaerobic side-stream reactor. Water Sci Technol. 2020;81:1250-63. DOI: 10.2166/wst.2020.223.10.2166/wst.2020.22332597411
DOI: https://doi.org/10.2478/eces-2022-0035 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 511 - 523
Published on: Jan 14, 2023
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Engin Gürtekin, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.