Have a personal or library account? Click to login
Tetracycline Removal from Water by Adsorption on Geomaterial, Activated Carbon and Clay Adsorbents Cover

Tetracycline Removal from Water by Adsorption on Geomaterial, Activated Carbon and Clay Adsorbents

Open Access
|Oct 2021

References

  1. [1] Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Lavelle P. Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Appl Soil Ecol. 2004;25:99-109. DOI: 10.1016/j.apsoil.2003.09.003.10.1016/j.apsoil.2003.09.003
  2. [2] Mirasgedis S, Hontou V, Georgopoulou E, Sarafidis Y, Gakis N, Lalas DP, et al. Environmental damage costs from airborne pollution of industrial activities in the greater Athens, Greece area and the resulting benefits from the introduction of BAT. Environ Impact Assess Rev. 2008;28:39-56. DOI: 10.1016/j.eiar.2007.03.006.10.1016/j.eiar.2007.03.006
  3. [3] Du YJ, Hayashi S. A study on sorption properties of Cd2+ on Ariake clay for evaluating its potential use as a landfill barrier material. Appl Clay Sci. 2006;32:14-24. DOI: 10.1016/j.clay.2006.01.003.10.1016/j.clay.2006.01.003
  4. [4] Ololade OO, Mavimbela S, Oke SA, Makhadi R. Impact of leachate from northern landfill site in bloemfontein on water and soil quality: Implications for water and food security. Sustainability. 2019;11:4238. DOI: 10.3390/su11154238.10.3390/su11154238
  5. [5] Przydatek G, Kanownik W. Impact of small municipal solid waste landfill on groundwater quality. Environ Monit Assess. 2019;191:169. DOI: 10.1007/s10661-019-7279-5.10.1007/s10661-019-7279-5639459230778777
  6. [6] Sun X-c, Xu Y, Liu Y-q, Nai C-x, Dong L, Liu J-c, et al. Evolution of geomembrane degradation and defects in a landfill: Impacts on long-term leachate leakage and groundwater quality. J Clean Prod. 2019;224:335-45. DOI: 10.1016/j.jclepro.2019.03.200.10.1016/j.jclepro.2019.03.200
  7. [7] Mepaiyeda S, Madi K, Gwavava O, Baiyegunhi C. Geological and geophysical assessment of groundwater contamination at the Roundhill landfill site, Berlin, Eastern Cape, South Africa. Heliyon. 2020;6:e04249. DOI: 10.1016/j.heliyon.2020.e04249.10.1016/j.heliyon.2020.e04249733442832642581
  8. [8] Wu D, Sui Q, Yu X, Zhao W, Li Q, Fatta-Kassinos D, et al. Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multiresidue analysis of 70 PPCPs: Analytical method development and application in Yangtze River Delta, China. Sci Total Environ. 2021;753:141653. DOI: 10.1016/j.scitotenv.2020.141653.10.1016/j.scitotenv.2020.14165332896735
  9. [9] Christensen TH, Kjeldsen P, Albrechtsen HJr, Heron G, Nielsen PH, Bjerg PL, et al. Attenuation of landfill leachate pollutants in aquifers. Crit Rev Environ Sci Technol. 1994;24:119-202. DOI: 10.1080/10643389409388463.10.1080/10643389409388463
  10. [10] Top S, Akkaya GK, Demir A, Yıldız Ş, Balahorli V, Bilgili MS. Investigation of leachate characteristics in field-scale landfill test cells. Int J Environ Res. 2019;13:829-42. DOI: 10.1007/s41742-019-00217-5.10.1007/s41742-019-00217-5
  11. [11] Nevondo V, Malehase T, Daso AP, Okonkwo OJ. Leachate seepage from landfill: a source of groundwater mercury contamination in South Africa. Water SA. 2019;45. DOI: 10.4314/wsa.v45i2.09.10.4314/wsa.v45i2.09
  12. [12] Gamoń F, Tomaszewski M, Ziembińska-Buczyńska A. Ecotoxicological study of landfill leachate treated in the ANAMMOX process. Water Qual Res J. 2019;54:230-41. DOI: 10.2166/wqrj.2019.042.10.2166/wqrj.2019.042
  13. [13] Caroline Baettker E, Kozak C, Knapik HG, Aisse MM. Applicability of conventional and non-conventional parameters for municipal landfill leachate characterization. Chemosphere. 2020;251:126414. DOI: 10.1016/j.chemosphere.2020.126414.10.1016/j.chemosphere.2020.12641432443252
  14. [14] Nika MC, Ntaiou K, Elytis K, Thomaidi VS, Gatidou G, Kalantzi OI, et al. Wide-scope target analysis of emerging contaminants in landfill leachates and risk assessment using Risk Quotient methodology. J Hazard Mater. 2020;394:122493. DOI: 10.1016/j.jhazmat.2020.122493.10.1016/j.jhazmat.2020.12249332240898
  15. [15] Wang P, Wu D, You X, Su Y, Xie B. Antibiotic and metal resistance genes are closely linked with nitrogen-processing functions in municipal solid waste landfills. J Hazard Mater. 2021;403:123689. DOI: 10.1016/j.jhazmat.2020.123689.10.1016/j.jhazmat.2020.12368932835993
  16. [16] Kamiński W, Kuśmierek K, Świątkowski A, Tomczak E. Simultaneous adsorption of phenol derivatives from water onto spherical activated carbon. Ecol Chem Eng S. 2020;27:403-13. DOI: 10.2478/eces-2020-0026.10.2478/eces-2020-0026
  17. [17] King AG. Research advances: Eating clay; look to soil for new leads in arthritis treatment; The fate of tetracyclines. J Chem Educ. 2006;83:186-91. DOI: 10.1021/ed083p186.10.1021/ed083p186
  18. [18] Wang YJ, Jia DA, Sun RJ, Zhu HW, Zhou DM. Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ Sci Technol. 2008;42:3254-9. DOI: 10.1021/es702641a.10.1021/es702641a18522102
  19. [19] David JC, Buchet A, Sialelli JN, Delouvée S. The use of antibiotics in veterinary medicine: Representations of antibiotics and biosecurity by pig farmers. Prat Psychol. 2020. DOI: 10.1016/j.prps.2020.06.003.10.1016/j.prps.2020.06.003
  20. [20] Zhu Y, Liu K, Zhang J, Liu X, Yang L, Wei R, et al. Antibiotic body burden of elderly Chinese population and health risk assessment: A human biomonitoring-based study. Environ Pollut. 2020;256:113311. DOI: 10.1016/j.envpol.2019.113311.10.1016/j.envpol.2019.11331131813705
  21. [21] Yang Y, Bian L, Hang X, Yan C, Huang Y, Ye F, et al. In vitro activity of new tetracycline analogues omadacycline and eravacycline against clinical isolates of Helicobacter pylori collected in China. Diagn Microbiol Infect Dis. 2020;98:115129. DOI: 10.1016/j.diagmicrobio.2020.115129.10.1016/j.diagmicrobio.2020.11512932739761
  22. [22] Chan R, Wandee S, Wang M, Chiemchaisri W, Chiemchaisri C, Yoshimura C. Fate, transport and ecological risk of antibiotics from pig farms along the Bang Pakong River, Thailand. Agr Ecosyst Environ. 2020;304:107123. DOI: 10.1016/j.agee.2020.107123.10.1016/j.agee.2020.107123
  23. [23] Ji L, Chen W, Duan L, Zhu D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol. 2009;43:2322-7. DOI: 10.1021/es803268b.10.1021/es803268b19452881
  24. [24] Ji L, Chen W, Bi J, Zheng S, Xu Z, Zhu D, et al. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ Toxicol Chem. 2010;29:2713-9. DOI: 10.1002/etc.350.10.1002/etc.35020836069
  25. [25] Li R, Yuan Q, Zhang Y, Ling J, Han T. Hydrophilic interaction chromatographic determination of oxytetracycline in the environmental water using silica column. J Liq Chromatogr R t. 2011;34:511-20. DOI: 10.1080/10826076.2011.556971.10.1080/10826076.2011.556971
  26. [26] Sun H, Shi X, Mao J, Zhu D. Tetracycline sorption to coal and soil humic acids: An examination of humic structural heterogeneity. Environ Toxicol Chem. 2010;29:1934-42. DOI: 10.1002/etc.248.10.1002/etc.24820821650
  27. [27] Mishra S, Tiwary D, Ohri A, Agnihotri AK. Impact of municipal solid waste landfill leachate on groundwater quality in Varanasi, India. Ground Sustain Dev. 2019;9:100230. DOI: 10.1016/j.gsd.2019.100230.10.1016/j.gsd.2019.100230
  28. [28] Mittal A, Singh R, Chakma S, Goel G. Permeable reactive barrier technology for the remediation of groundwater contaminated with nitrate and phosphate resulted from pit-toilet leachate. J Water Process Eng. 2020;37:101471. DOI: 10.1016/j.jwpe.2020.101471.10.1016/j.jwpe.2020.101471
  29. [29] Rasheed T, Bilal M, Hassan AA, Nabeel F, Bharagava RN, Romanholo Ferreira LF, et al. Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents. Environ Res. 2020;185:109436. DOI: 10.1016/j.envres.2020.109436.10.1016/j.envres.2020.10943632278154
  30. [30] Yadav B, Pandey AK, Kumar LR, Kaur R, Yellapu SK, Sellamuthu B, et al. Introduction to wastewater microbiology: special emphasis on hospital wastewater. In: Tyagi RD, Sellamuthu B, Tiwari B, Yan S, Drogui P, Zhang X, et al., editors. Current Developments in Biotechnology and Bioengineering: Elsevier; 2020;141. DOI: 10.1016/B978-0-12-819722-6.00001-8.10.1016/B978-0-12-819722-6.00001-8
  31. [31] Luczkiewicz A, Fudala-Ksiazek S, Jankowska K, Quant B, Olanczuk-Neyman, K. Diversity of fecal coliforms and their antimicrobial resistance patterns in wastewater treatment model plant. Water Sci Technol. 2010;61:1383-92. DOI: 10.2166/wst.2010.015.10.2166/wst.2010.015
  32. [32] Hölzel CS, Harms KS, Küchenhoff H, Kunz A, Müller C, Meyer K, et al. Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and sulfonamides. J Appl Microbiol. 2010;108:1642-56. DOI: 10.1111/j.1365-2672.2009.04570.x.10.1111/j.1365-2672.2009.04570.x
  33. [33] Kumar KC. Gupta S, Chander Y, Singh AK. Antibiotic use in agriculture and its impact on the terrestrial environment. ADV AGRON: Academic Press; 2005;1-54. DOI: 10.1016/S0065-2113(05)87001-4.10.1016/S0065-2113(05)87001-4
  34. [34] Hassoun-Kheir N, Stabholz Y, Kreft J-U, de la Cruz R, Romalde JL, Nesme J, et al. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Sci Total Environ. 2020;743:140804. DOI: 10.1016/j.scitotenv.2020.140804.10.1016/j.scitotenv.2020.14080432758846
  35. [35] Voigt AM, Zacharias N, Timm C, Wasser F, Sib E, Skutlarek D, et al. Association between antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in anthropogenic wastewater -An evaluation of clinical influences. Chemosphere. 2020;241:125032. DOI: 10.1016/j.chemosphere.2019.125032.10.1016/j.chemosphere.2019.12503231622887
  36. [36] Sun H, Bjerketorp J, Levenfors JJ, Schnürer A. Isolation of antibiotic-resistant bacteria in biogas digestate and their susceptibility to antibiotics. Environ Pollut. 2020;266:115265. DOI: 10.1016/j.envpol.2020.115265.10.1016/j.envpol.2020.11526532731190
  37. [37] López-de-la-Cruz J, Pérez-Aranda M, Alcudia A, Begines B, Caraballo T, Pajuelo E, et al. Dynamics and numerical simulations to predict empirical antibiotic treatment of multi-resistant Pseudomonas aeruginosa infection. Commun Nonlinear Sci Numer Simul. 2020;91:105418. DOI: 10.1016/j.cnsns.2020.105418.10.1016/j.cnsns.2020.105418
  38. [38] Kümmerer K. Antibiotics in the aquatic environment - A review - Part I. Chemosphere. 2009;75:417-34. DOI: 10.1016/j.chemosphere.2008.11.086.10.1016/j.chemosphere.2008.11.08619185900
  39. [39] Kümmerer K. Antibiotics in the aquatic environment - A review - Part II. Chemosphere. 2009;75:435-41. DOI: 10.1016/j.chemosphere.2008.12.006.10.1016/j.chemosphere.2008.12.00619178931
  40. [40] Yue Y, Shen C, Ge Y. Biochar accelerates the removal of tetracyclines and their intermediates by altering soil properties. J Hazard Mater. 2019;380:120821. DOI: 10.1016/j.jhazmat.2019.120821.10.1016/j.jhazmat.2019.12082131326833
  41. [41] Santás-Miguel V, Arias-Estévez M, Díaz-Raviña M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A, et al. Interactions between soil properties and tetracycline toxicity affecting to bacterial community growth in agricultural soil. Appl Soil Ecol. 2020;147:103437. DOI: 10.1016/j.apsoil.2019.103437.10.1016/j.apsoil.2019.103437
  42. [42] Xu L, Zhang H, Xiong P, Zhu Q, Liao C, Jiang G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci Total Environ. 2021;753:141975. DOI: 10.1016/j.scitotenv.2020.141975.10.1016/j.scitotenv.2020.14197533207448
  43. [43] Kulshrestha P, Giese RF, Aga DS. Investigating the molecular interactions of oxytetracycline in clay and organic matter:  Insights on factors affecting its mobility in soil. Environ Sci Technol. 2004;38:4097-105. DOI: 10.1021/es034856q.10.1021/es034856q15352447
  44. [44] Conde-Cid M, Fernández-Calviño D, Núñez-Delgado A, Fernández-Sanjurjo MJ, Arias-Estévez M, Álvarez-Rodríguez E. Estimation of adsorption/desorption Freundlich’s affinity coefficients for oxytetracycline and chlortetracycline from soil properties: Experimental data and pedotransfer functions. Ecotoxicol Environ Saf. 2020;196:110584. DOI: 10.1016/j.ecoenv.2020.110584.10.1016/j.ecoenv.2020.11058432278142
  45. [45] Liu J, Yu F, Call DR, Mills DA, Zhang A, Zhao Z. On-farm soil resistome is modified after treating dairy calves with the antibiotic florfenicol. Sci Total Environ. 2020:141694. DOI: 10.1016/j.scitotenv.2020.141694.10.1016/j.scitotenv.2020.14169432871373
  46. [46] Xu H, Chen Z, Wu X, Zhao L, Wang N, Mao D, et al. Antibiotic contamination amplifies the impact of foreign antibiotic-resistant bacteria on soil bacterial community. Sci Total Environ. 2020:143693. DOI: 10.1016/j.scitotenv.2020.143693.10.1016/j.scitotenv.2020.14369333280868
  47. [47] Xu XR, Li XY. Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere. 2010;78:430-6. DOI: 10.1016/j.chemosphere.2009.10.045.10.1016/j.chemosphere.2009.10.04519913873
  48. [48] Peng Q, Song J, Li X, Yuan H, Liu M, Duan L, et al. Pharmaceutically active compounds (PhACs) in surface sediments of the Jiaozhou Bay, north China. Environ Pollut. 2020;266:115245. DOI: 10.1016/j.envpol.2020.115245.10.1016/j.envpol.2020.11524532717590
  49. [49] Lu L, Liu J, Li Z, Zou X, Guo J, Liu Z, et al. Antibiotic resistance gene abundances associated with heavy metals and antibiotics in the sediments of Changshou Lake in the three Gorges Reservoir area, China. Ecol Indic. 2020;113:106275. DOI: 10.1016/j.ecolind.2020.106275.10.1016/j.ecolind.2020.106275
  50. [50] Zhang Y, Chen H, Jing L, Teng Y. Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river. Sci Total Environ. 2020;731:139128. DOI: 10.1016/j.scitotenv.2020.139128.10.1016/j.scitotenv.2020.13912832413658
  51. [51] Lindsey ME, Meyer M, Thurman EM. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal Chem. 2001;73:4640-6. DOI: 10.1021/ac010514w.10.1021/ac010514w11605842
  52. [52] Nguyen CH, Fu C-C, Kao D-Y, Tran TTV, Juang R-S. Adsorption removal of tetracycline from water using poly(vinylidene fluoride)/polyaniline-montmorillonte mixed matrix membranes. J Taiwan Inst Chem Eng. 2020. DOI: 10.1016/j.jtice.2020.06.007.10.1016/j.jtice.2020.06.007
  53. [53] Li Z, Wang X, Xu N, Xiao Y, Ma L, Duan J. Cost-effective and visible-light-driven melamine-derived sponge for tetracyclines degradation and Salmonella inactivation in water. Chem Eng J. 2020;394:124913. DOI: 10.1016/j.cej.2020.124913.10.1016/j.cej.2020.124913
  54. [54] Avisar D, Levin G, Gozlan I. The processes affecting oxytetracycline contamination of groundwater in a phreatic aquifer underlying industrial fish ponds in Israel. Environ Earth Sci. 2009;59:939-45. DOI: 10.1007/s12665-009-0088-3.10.1007/s12665-009-0088-3
  55. [55] Sapkota AR, Curriero FC, Gibson KE, Schwab KJ. Antibiotic-resistant enterococci and fecal indicators in surface water and groundwater impacted by a concentrated swine feeding operation. Environ Health Persp. 2007;115:1040-5. DOI: 10.1289/ehp.9770.10.1289/ehp.9770191356717637920
  56. [56] Huang F, An Z, Moran MJ, Liu F. Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009-2019). J Hazard Mater. 2020;399:122813. DOI: 10.1016/j.jhazmat.2020.122813.10.1016/j.jhazmat.2020.12281332937691
  57. [57] Szymczycha B, Borecka M, Białk-Bielińska A, Siedlewicz G, Pazdro K. Submarine groundwater discharge as a source of pharmaceutical and caffeine residues in coastal ecosystem: Bay of Puck, southern Baltic Sea case study. Sci Total Environ. 2020;713:136522. DOI: 10.1016/j.scitotenv.2020.136522.10.1016/j.scitotenv.2020.13652232019013
  58. [58] Miao XS, Bishay F, Chen M, Metcalfe CD. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ Sci Technol. 2004;38:3533-41. DOI: 10.1021/es030653q.10.1021/es030653q15296302
  59. [59] Batt AL, Kim S, Aga DS. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere. 2007;68:428-35. DOI: 10.1016/j.Chemosphere.2007.01.008.10.1016/j.chemosphere.2007.01.00817316751
  60. [60] Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Zhang X, et al. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Sci Total Environ. 2020;720:137662. DOI: 10.1016/j.scitotenv.2020.137662.10.1016/j.scitotenv.2020.13766232325595
  61. [61] Ma S, Jing J, Liu P, Li Z, Jin W, Xie B, et al. High selectivity and effectiveness for removal of tetracycline and its related drug resistance in food wastewater through schwertmannite/graphene oxide catalyzed photo-Fenton-like oxidation. J Hazard Mater. 2020;392:122437. DOI: 10.1016/j.jhazmat.2020.122437.10.1016/j.jhazmat.2020.12243732193108
  62. [62] Xie W, Shi Y, Wang Y, Zheng Y, Liu H, Hu Q, et al. Electrospun iron/cobalt alloy nanoparticles on carbon nanofibers towards exhaustive electrocatalytic degradation of tetracycline in wastewater. Chem Eng J. 2021;405:126585. DOI: 10.1016/j.cej.2020.126585.10.1016/j.cej.2020.126585
  63. [63] Todorov B, Nedyalkova M, Simeonov V. Environmental effect of potential radiopharmaceuticals residuals. Ecol Chem Eng S. 2020;27:603-14. DOI: 10.2478/eces-2020-0038.10.2478/eces-2020-0038
  64. [64] Phoon BL, Ong CC, Mohamed Saheed MS, Show P-L, Chang J-S, Ling TC, et al. Conventional and emerging technologies for removal of antibiotics from wastewater. J Hazard Mater. 2020;400:122961. DOI: 10.1016/j.jhazmat.2020.122961.10.1016/j.jhazmat.2020.12296132947727
  65. [65] Pariente MI, Segura Y, Molina R, Martínez F. Chapter 2 - Wastewater treatment as a process and a resource. In: Olivares JA, Puyol D, Melero JA, Dufour J, editors. Wastewater Treatment Residues as Resources for Biorefinery Products and Biofuels. Elsevier; 2020;19-45. DOI: 10.1016/B978-0-12-816204-0.00002-3.10.1016/B978-0-12-816204-0.00002-3
  66. [66] Zaied BK, Rashid M, Nasrullah M, Zularisam AW, Pant D, Singh L. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Sci Total Environ. 2020;726:138095. DOI: 10.1016/j.scitotenv.2020.138095.10.1016/j.scitotenv.2020.13809532481207
  67. [67] Gautam S, Agrawal H, Thakur M, Akbari A, Sharda H, Kaur R, et al. Metal oxides and metal organic frameworks for the photocatalytic degradation: A review. J Environ Chem Eng. 2020;8:103726. DOI: 10.1016/j.jece.2020.103726.10.1016/j.jece.2020.103726
  68. [68] Li Z, Chang PH, Jean JS, Jiang WT, Wang CJ. Interaction between tetracycline and smectite in aqueous solution. J Colloid Interface Sci. 2010;341:311-9. DOI: 10.1016/j.jcis.2009.09.054.10.1016/j.jcis.2009.09.05419883920
  69. [69] Rajapaksha AU, Dilrukshi Premarathna KS, Gunarathne V, Ahmed A, Vithanage M. 9 - Sorptive removal of pharmaceutical and personal care products from water and wastewater. In: Prasad MNV, Vithanage M, Kapley A, editors. Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology. Butterworth-Heinemann; 2019;213-38. DOI: 10.1016/B978-0-12-816189-0.00009-3.10.1016/B978-0-12-816189-0.00009-3
  70. [70] da Rocha MC, Braz EMdA, Honório LMC, Trigueiro P, Fonseca MG, Silva-Filho EC, et al. Understanding the effect of UV light in systems containing clay minerals and tetracycline. Appl Clay Sci. 2019;183:105311. DOI: 10.1016/j.clay.2019.105311.10.1016/j.clay.2019.105311
  71. [71] ul Haque S, Nasar A, Inamuddin. 27 - Montmorillonite clay nanocomposites for drug delivery. In: Inamuddin, Asiri AM, Mohammad A, editors. Applications of Nanocomposite Materials in Drug Delivery: Woodhead Publishing; 2018. p. 633-48. DOI: 10.1016/B978-0-12-813741-3.00028-5.10.1016/B978-0-12-813741-3.00028-5
  72. [72] Scholtzová E. 6 - Computational modeling of nanoclays. In: Cavallaro G, Fakhrullin R, Pasbakhsh P, editors. Clay Nanoparticles. Elsevier; 2020. p. 139-66. DOI: 10.1016/B978-0-12-816783-0.00006-2.10.1016/B978-0-12-816783-0.00006-2
  73. [73] Wu M, Zhao S, Jing R, Shao Y, Liu X, Lv F, et al. Competitive adsorption of antibiotic tetracycline and ciprofloxacin on montmorillonite. Appl Clay Sci. 2019;180:105175. DOI: 10.1016/j.clay.2019.105175.10.1016/j.clay.2019.105175
  74. [74] Wen X, Zeng Z, Du C, Huang D, Zeng G, Xiao R, et al. Immobilized laccase on bentonite-derived mesoporous materials for removal of tetracycline. Chemosphere. 2019;222:865-71. DOI: 10.1016/j.chemosphere.2019.02.020.10.1016/j.chemosphere.2019.02.02030753965
  75. [75] Chang P-H, Li Z, Jiang W-T, Jean J-S. Adsorption and intercalation of tetracycline by swelling clay minerals. Appl Clay Sci. 2009;46:27-36. DOI: 10.1016/j.clay.2009.07.002.10.1016/j.clay.2009.07.002
  76. [76] Guo S, Yang W, You L, Li J, Chen J, Zhou K. Simultaneous reduction of Cr(VI) and degradation of tetracycline hydrochloride by a novel iron-modified rectorite composite through heterogeneous photo-Fenton processes. Chem Eng J. 2020;393:124758. DOI: 10.1016/j.cej.2020.124758.10.1016/j.cej.2020.124758
  77. [77] Li Z, Guo M, Sun X, Li L, Guo X, Huang L, et al. High concentration phosphate removal by calcite and its subsequent utilization for tetracycline removal. J Water Process Eng. 2020;37:101412. DOI: 10.1016/j.jwpe.2020.101412.10.1016/j.jwpe.2020.101412
  78. [78] Han H, Rafiq MK, Zhou T, Xu R, Mašek O, Li X. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J Hazard Mater. 2019;369:780-96. DOI: 10.1016/j.jhazmat.2019.02.003.10.1016/j.jhazmat.2019.02.00330851518
  79. [79] Chang P-H, Li Z, Yu T-L, Munkhbayer S, Kuo T-H, Hung Y-C, et al. Sorptive removal of tetracycline from water by palygorskite. J Hazard Mater. 2009;165:148-55. DOI: 10.1016/j.jhazmat.2008.09.113.10.1016/j.jhazmat.2008.09.11319008045
  80. [80] Wang W, Wang A. 2 - Palygorskite Nanomaterials: Structure, Properties, and Functional Applications. In: Wang A, Wang W, editors. Nanomaterials from Clay Minerals. Elsevier; 2019;21-133. DOI: 10.1016/B978-0-12-814533-3.00002-8.10.1016/B978-0-12-814533-3.00002-8
  81. [81] Shi Y, Yan Z, Xu Y, Tian T, Zhang J, Pang J, et al. Visible-light-driven AgBr-TiO2-Palygorskite photocatalyst with excellent photocatalytic activity for tetracycline hydrochloride. J Clean Prod. 2020;277:124021. DOI: 10.1016/j.jclepro.2020.124021.10.1016/j.jclepro.2020.124021
  82. [82] Lian J, Ouyang Q, Tsang PE, Fang Z. Fenton-like catalytic degradation of tetracycline by magnetic palygorskite nanoparticles prepared from steel pickling waste liquor. Appl Clay Sci. 2019;182:105273. DOI: 10.1016/j.clay.2019.105273.10.1016/j.clay.2019.105273
  83. [83] Caroni ALPF, de Lima CRM, Pereira MR, Fonseca JLC. The kinetics of adsorption of tetracycline on chitosan particles. J Colloid Interface Sci. 2009;340:182-91. DOI: 10.1016/j.jcis.2009.08.016.10.1016/j.jcis.2009.08.01619781709
  84. [84] Ranjbari S, Tanhaei B, Ayati A, Khadempir S, Sillanpää M. Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: Mechanism, kinetic, isotherms and thermodynamic study. Int J Biol Macromol. 2020;155:421-9. DOI: 10.1016/j.ijbiomac.2020.03.188.10.1016/j.ijbiomac.2020.03.18832224175
  85. [85] Topal M, Arslan Topal EI. Optimization of tetracycline removal with chitosan obtained from mussel shells using RSM. J Ind Eng Chem. 2020;84:315-21. DOI: 10.1016/j.jiec.2020.01.013.10.1016/j.jiec.2020.01.013
  86. [86] Ahamad T, Naushad M, Al-Shahrani T, Al-hokbany N, Alshehri SM. Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: Kinetic and thermodynamic studies. Int J Biol Macromol. 2020;147:258-67. DOI: 10.1016/j.ijbiomac.2020.01.025.10.1016/j.ijbiomac.2020.01.02531917217
  87. [87] Chen W-R, Huang C-H. Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere. 2010;79:779-85. DOI: 10.1016/j.chemosphere.2010.03.020.10.1016/j.chemosphere.2010.03.02020378149
  88. [88] Hami HK, Abbas RF, Abdullwahid Jasim A, Abdul Abass DA, et al. Kinetics study of removal doxycycline drug from aqueous solution using aluminum oxide surface. Egypt J Chem. 2019;62:91-101. DOI: 10.21608/EJCHEM.2019.5499.1483.10.21608/ejchem.2019.5499.1483
  89. [89] Mohammed AA, Kareem SL. Adsorption of tetracycline fom wastewater by using pistachio shell coated with ZnO nanoparticles: Equilibrium, kinetic and isotherm studies. Alex Eng J. 2019;58:917-28. DOI: 10.1016/j.aej.2019.08.006.10.1016/j.aej.2019.08.006
  90. [90] Emzhina V, Kuzin E, Babusenko E, Krutchinina N. Photodegradation of tetracycline in presence of H2O2 and metal oxide based catalysts. J Water Process Eng. 2020:101696. DOI: 10.1016/j.jwpe.2020.101696.10.1016/j.jwpe.2020.101696
  91. [91] Xie D, Zhang H, Jiang M, Huang H, Zhang H, Liao Y, et al. Adsorptive removal of tetracycline from water using Fe(III)-functionalized carbonized humic acid. Chin J Chem Eng. 2020. DOI: 10.1016/j.cjche.2020.06.039.10.1016/j.cjche.2020.06.039
  92. [92] Yan C, Fan L, Chen Y, Xiong Y. Effective adsorption of oxytetracycline from aqueous solution by lanthanum modified magnetic humic acid. Colloids Surf A: Physicochem Eng Aspects. 2020;602:125135. DOI: 10.1016/j.colsurfa.2020.125135.10.1016/j.colsurfa.2020.125135
  93. [93] Choi K-J, Kim S-G, Kim S-H. Removal of antibiotics by coagulation and granular activated carbon filtration. J Hazard Mater. 2008;151:38-43. DOI: 10.1016/j.jhazmat.2007.05.059.10.1016/j.jhazmat.2007.05.05917628341
  94. [94] Wang J, Lei S, Liang L. Preparation of porous activated carbon from semi-coke by high temperature activation with KOH for the high-efficiency adsorption of aqueous tetracycline. Appl Surf Sci. 2020;530:147187. DOI: 10.1016/j.apsusc.2020.147187.10.1016/j.apsusc.2020.147187
  95. [95] Yazidi A, Atrous M, Edi Soetaredjo F, Sellaoui L, Ismadji S, Erto A, et al. Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis. Chem Eng J. 2020;379:122320. DOI: 10.1016/j.cej.2019.122320.10.1016/j.cej.2019.122320
  96. [96] Tan G, Mao Y, Wang H, Xu N. A comparative study of arsenic(V), tetracycline and nitrate ions adsorption onto magnetic biochars and activated carbon. Chem Eng Res Design. 2020;159:582-91. DOI: 10.1016/j.cherd.2020.05.011.10.1016/j.cherd.2020.05.011
  97. [97] Ray SS, Gusain R, Kumar N. Chapter 9. One-dimensional carbon nanomaterials-based adsorbents. In: Ray SS, Gusain R, Kumar N, editors. Carbon Nanomaterial-Based Adsorbents for Water Purification. Elsevier; 2020;195-224. DOI: 10.1016/B978-0-12-821959-1.00009-X.10.1016/B978-0-12-821959-1.00009-X
  98. [98] Chen C, Feng X, Yao S. Ionic liquid-multi walled carbon nanotubes composite tablet for continuous adsorption of tetracyclines and heavy metals. J Clean Prod. 2020:124937. DOI: 10.1016/j.jclepro.2020.124937.10.1016/j.jclepro.2020.124937
  99. [99] Zhao W, Tian Y, Chu X, Cui L, Zhang H, Li M, et al. Preparation and characteristics of a magnetic carbon nanotube adsorbent: Its efficient adsorption and recoverable performances. Sep Purif Technol. 2021;257:117917. DOI: 10.1016/j.seppur.2020.117917.10.1016/j.seppur.2020.117917
  100. [100] Ait Hamoudi S, Hamdi B, Brendlé J, Kessaissia Z. Adsorption of lead by geomaterial matrix: Adsorption equilibrium and kinetics. Sep Sci Technol. 2014;49:1416-26. DOI: 10.1080/01496395.2013.879313.10.1080/01496395.2013.879313
  101. [101] Cuevas J, Ruiz A, Fernández R, González-Santamaría D, Angulo M, Ortega A, et al. Authigenic clay minerals from interface reactions of concrete-clay engineered barriers: A new perspective on Mg-clays formation in alkaline environments. Minerals. 2018;8:362. DOI: 10.3390/min8090362.10.3390/min8090362
  102. [102] Wang J, Ma B, Tan H, Du C, Chu Z, Luo Z, et al. Hydration and mechanical properties of cement-marble powder system incorporating triisopropanolamine. Constr Build Mater. 2021;266:121068. DOI: 10.1016/j.conbuildmat.2020.121068.10.1016/j.conbuildmat.2020.121068
  103. [103] Muñoz P, Letelier V, Bustamante MA, Marcos-Ortega J, Sepúlveda JG. Assessment of mechanical, thermal, mineral and physical properties of fired clay brick made by mixing kaolinitic red clay and paper pulp residues. Appl Clay Sci. 2020;198:105847. DOI: 10.1016/j.clay.2020.105847.10.1016/j.clay.2020.105847
  104. [104] Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309-19. DOI: 10.1021/ja01269a023.10.1021/ja01269a023
  105. [105] Gibson N, Kuchenbecker P, Rasmussen K, Hodoroaba V-D, Rauscher H. Chapter 4.1 - Volume-specific surface area by gas adsorption analysis with the BET method. In: Hodoroaba V-D, Unger WES, Shard AG, editors. Characterization of Nanoparticles. Elsevier; 2020;265-94. DOI: 10.1016/B978-0-12-814182-3.00017-1.10.1016/B978-0-12-814182-3.00017-1
  106. [106] Tripathi M, Bhatnagar A, Mubarak NM, Sahu JN, Ganesan P. RSM optimization of microwave pyrolysis parameters to produce OPS char with high yield and large BET surface area. Fuel. 2020;277:118184. DOI: 10.1016/j.fuel.2020.118184.10.1016/j.fuel.2020.118184
  107. [107] Guibal E, Milot C, Tobin JM. Metal-anion sorption by chitosan beads: Equilibrium and kinetic studies. Ind Eng Chem Res. 1998;37:1454-63. DOI: 10.1021/ie970395.4.10.1021/ie9703954
  108. [108] Ramirez A, Ocampo R, Giraldo S, Padilla E, Flórez E, Acelas N. Removal of Cr(VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations. J Environ Chem Eng. 2020;8:103702. DOI: 10.1016/j.jece.2020.103702.10.1016/j.jece.2020.103702
  109. [109] Freundlich H. Über die adsorption in Losungen. Z Phys Chem. 1906;57:385-470. DOI: 10.1515/zpch-1907-5723.10.1515/zpch-1907-5723
  110. [110] Walsh K, Mayer S, Rehmann D, Hofmann T, Glas K. Equilibrium data and its analysis with the Freundlich model in the adsorption of arsenic(V) on granular ferric hydroxide. Sep Purif Technol. 2020;243:116704. DOI: 10.1016/j.seppur.2020.116704.10.1016/j.seppur.2020.116704
  111. [111] Langmuir I. The adsorption of gases on plane surfaces of glass, Micaand platinum. J Am Chem Soc. 1918;40:1361-403. DOI: 10.1021/ja02242a004.10.1021/ja02242a004
  112. [112] Guo X, Wang J. Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J Mol Liq. 2019;296:111850. DOI: 10.1016/j.jiec.2020.01.013.10.1016/j.jiec.2020.01.013
  113. [113] Oubagaranadin JUK, Murthy ZVP. Isotherm modeling and batch adsorber design for the adsorption of Cu(II) on a clay containing montmorillonite. Appl Clay Sci. 2010;50:409-13. DOI: 10.1016/j.clay.2010.09.008.10.1016/j.clay.2010.09.008
  114. [114] Aguayo-Villarreal IA, Cortes-Arriagada D, Rojas-Mayorga CK, Pineda-Urbina K, Muñiz-Valencia R, González J. Importance of the interaction adsorbent-adsorbate in the dyes adsorption process and DFT modeling. J Mol Struct. 2020;1203:127398. DOI: 10.1016/j.molstruc.2019.127398.10.1016/j.molstruc.2019.127398
  115. [115] Namasivayam C, Senthilkumar, S. Recycling of industrial solid waste for the removal of mercury(II) by adsorption process. Chemosphere. 1997;34:357-75. DOI: 10.1016/S0045-6535(96)00383-9.10.1016/S0045-6535(96)00383-9
  116. [116] Akinbulumo OA, Odejobi OJ, Odekanle EL. Thermodynamics and adsorption study of the corrosion inhibition of mild steel by Euphorbia heterophylla L. extract in 1.5 M HCl. Results Materials. 2020;5:100074. DOI: 10.1016/j.rinma.2020.100074.10.1016/j.rinma.2020.100074
  117. [117] Amari A, Chlendi M, Gannouni A, Bellagi A. Optimised activation of bentonite for toluene adsorption. Appl Clay Sci. 2010;47:457-61. DOI: 10.1016/j.clay.2009.11.035.10.1016/j.clay.2009.11.035
  118. [118] Sing KSW, Everet D, Haul R, Moscou L, Pierotti R, Rouquerol J, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603-19. DOI: 10.1351/pac198557040603.10.1351/pac198557040603
  119. [119] Shahrashoub M, Bakhtiari S. The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Micropor Mesopor Mater. 2021;311:110692. DOI: 10.1016/j.micromeso.2020.110692.10.1016/j.micromeso.2020.110692
  120. [120] Xiao F, Yan B-Q, Zou X-Y, Cao X-Q, Dong L, Lyu X-J, et al. Study on ionic liquid modified montmorillonite and molecular dynamics simulation. Colloids Surf A. Physicochem Eng Asp. 2020;587:124311. DOI: 10.1016/j.colsurfa.2019.124311.10.1016/j.colsurfa.2019.124311
  121. [121] Tsai WT, Su TY, Hsu HC, Lin KY, Lin CM, Tai TH. Preparation of mesoporous solids by acid treatment of a porphyritic andesite (wheat-rice-stone). Micropor Mesopor Mater. 2007;102:196-203. DOI: 10.1016/j.micromeso.2006.12.036.10.1016/j.micromeso.2006.12.036
  122. [122] Chu Y, Zhu S, Xia M, Wang F, Lei W. Methionine-montmorillonite composite - A novel material for efficient adsorption of lead ions. Adv Powder Technol. 2020;31:708-17. DOI: 10.1016/j.apt.2019.11.026.10.1016/j.apt.2019.11.026
  123. [123] Barsotti E, Tan SP, Piri M, Chen J-H. Capillary-condensation hysteresis in naturally-occurring nanoporous media. Fuel. 2020;263:116441. DOI: 10.1016/j.fuel.2019.116441.10.1016/j.fuel.2019.116441
  124. [124] Lu X, Tang B, Zhang Q, Liu L, Fan R, Zhang Z. The presence of Cu facilitates adsorption of tetracycline (TC) onto water hyacinth roots. Int J Environ Res Public Health. 2018;15:1982. DOI: 10.3390/ijerph15091982.10.3390/ijerph15091982616498430208650
  125. [125] Shen H, Ie I-R, Yuan C-S, Hung C-H, Liu C-W. Adsorption phenomenon and kinetic mechanisms of HgO and HgCl2 by innovative composite sulfurized activated carbons. Fuel. 2019;256:115894. DOI: 10.1016/j.fuel.2019.115894.10.1016/j.fuel.2019.115894
  126. [126] Zhang X, Lin X, He Y, Luo X. Phenolic hydroxyl derived copper alginate microspheres as superior adsorbent for effective adsorption of tetracycline. Int J Biol Macromol. 2019;136:445-59. DOI: 10.1016/j.ijbiomac.2019.05.165.10.1016/j.ijbiomac.2019.05.16531212045
  127. [127] Acemioğlu B. Batch kinetic study of sorption of methylene blue by perlite. Chem Eng J. 2005;106:73-81. DOI: 10.1016/j.cej.2004.10.005.10.1016/j.cej.2004.10.005
  128. [128] Kannan N, Meenakshisundaram M. Adsorption of Congo Red on various activated carbons. A comparative study. Water Air Soil Pollut. 2002;138:289-305. DOI: 10.1023/A:1015551413378.10.1023/A:1015551413378
  129. [129] Kuang Y, Zhang X, Zhou S. Adsorption of Methylene Blue in water onto activated carbon by surfactant modification. Water. 2020;12:587. DOI: 10.3390/w12020587.10.3390/w12020587
  130. [130] Pholosi A, Naidoo EB, Ofomaja AE. Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: A comparative kinetic and diffusion study. S Afr J Chem Eng. 2020;32:39-55. DOI: 10.1016/j.sajce.2020.01.005.10.1016/j.sajce.2020.01.005
  131. [131] Pauletto PS, Dotto GL, Salau NPG. Diffusion mechanisms and effect of adsorbent geometry on heavy metal adsorption. Chem Eng Res Des. 2020;157:182-94. DOI: 10.1016/j.cherd.2020.02.031.10.1016/j.cherd.2020.02.031
  132. [132] Bulut E, Özacar M, Şengil İA. Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design. Micropor Mesopor Mater. 2008;115:234-46. DOI: 10.1016/j.micromeso.2008.01.039.10.1016/j.micromeso.2008.01.039
  133. [133] Maliyekkal SM, Shukla S, Philip L, Nambi IM. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules. Chem Eng J. 2008;140:183-92. DOI: 10.1016/j.cej.2007.09.049.10.1016/j.cej.2007.09.049
  134. [134] Souza PR, Dotto GL, Salau NPG. Experimental and mathematical modeling of hindered diffusion effect of cationic dye in the adsorption onto bentonite. J Environ Chem Eng. 2019;7:102891. DOI: 10.1016/j.jece.2019.102891.10.1016/j.jece.2019.102891
  135. [135] Lin Z, Hu Y, Yuan Y, Hu B, Wang B. Comparative analysis of kinetics and mechanisms for Pb(II) sorption onto three kinds of microplastics. Ecotoxicol Environ Saf. 2021;208:111451. DOI: 10.1016/j.ecoenv.2020.111451.10.1016/j.ecoenv.2020.111451
  136. [136] Panday KK, Prasad G, Singh VN. Use of wollastonite for the treatment of Cu(II) rich effluents. Water Air Soil Pollut. 1986;27:287-96. DOI: 10.1007/BF00649410.10.1007/BF00649410
  137. [137] Moghimi F, Jafari AH, Yoozbashizadeh H, Askari M. Adsorption behavior of Sb(III) in single and binary Sb(III)-Fe(II) systems on cationic ion exchange resin: Adsorption equilibrium, kinetic and thermodynamic aspects. Trans Nonferrous Met Soc. 2020;30:236-48. DOI: 10.1016/S1003-6326(19)65195-2.10.1016/S1003-6326(19)65195-2
  138. [138] Mate CJ, Mishra S. Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye from water: Adsorption isotherm, kinetic, thermodynamic and biodegradation studies. Int J Biol Macromol. 2020;151:677-90. DOI: 10.1016/j.ijbiomac.2020.02.192.10.1016/j.ijbiomac.2020.02.19232084480
  139. [139] Wessels JM, Ford WE, Szymczak W, Schneider S. The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+:  A spectroscopic study. J Phys Chem B. 1998;102:9323-31. DOI: 10.1021/jp9824050.10.1021/jp9824050
  140. [140] Soori MM, Ghahramani E, Kazemian H, Al-Musawi TJ, Zarrabi M. Intercalation of tetracycline in nano sheet layered double hydroxide: An insight into UV/VIS spectra analysis. J Taiwan Inst Chem Engineers. 2016;63:271-85. DOI: 10.1016/j.jtice.2016.03.015.10.1016/j.jtice.2016.03.015
  141. [141] Song Y, Sackey EA, Wang H, Wang H. Adsorption of oxytetracycline on kaolinite. PLoS ONE. 2019;14:e0225335-e. DOI: 10.1371/journal.pone.0225335.10.1371/journal.pone.0225335685795331730641
  142. [142] Yuan L, Yan M, Huang Z, He K, Zeng G, Chen A, et al. Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution. J Colloid Interface Sci. 2019;541:101-13. DOI: 10.1016/j.jcis.2019.01.078.10.1016/j.jcis.2019.01.07830684749
  143. [143] Gu X, Evans LJ, Barabash SJ. Modeling the adsorption of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) onto montmorillonite. Geochim Cosmochim Acta. 2010;74:5718-28. DOI: 10.1016/j.gca.2010.07.016.10.1016/j.gca.2010.07.016
  144. [144] Chahardahmasoumi S, Sarvi MN, Jalali SAH. Modified montmorillonite nanosheets as a nanocarrier with smart pH-responsive control on the antimicrobial activity of tetracycline upon release. Appl Clay Sci. 2019;178:105135. DOI: 10.1016/j.clay.2019.105135.10.1016/j.clay.2019.105135
  145. [145] Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol. 2005;39:6649-63. DOI: 10.1021/es0484799.10.1021/es048479916190224
  146. [146] Wang B, Xu X, Tang H, Mao Y, Chen H, Ji F. Highly efficient adsorption of three antibiotics from aqueous solutions using glucose-based mesoporous carbon. Appl Surf Sci. 2020;528:147048. DOI: 10.1016/j.apsusc.2020.147048.10.1016/j.apsusc.2020.147048
  147. [147] Huízar-Félix AM, Aguilar-Flores C, Martínez-de-la Cruz A, Barandiarán JM, Sepúlveda-Guzmán S, Cruz-Silva R. Removal of tetracycline pollutants by adsorption and magnetic separation using reduced graphene oxide decorated with α-Fe2O3 nanoparticles. Nanomaterials. 2019;9:313. DOI: 10.3390/nano9030313.10.3390/nano9030313647367030813561
  148. [148] Radovic LR, Moreno-Castilla, C., Rivera-Utrilla, J. Carbon materials as adsorbents in aqueous solutions. In: Thrower PA, editor. Chemistry and Physics of Carbon. Marcel Dekker; 2001;27:227-405. ISBN: 9780429152658.
  149. [149] Shamsudin MS, Azha SF, Sellaoui L, Badawi M, Al-Ghamdi YO, Bonilla-Petriciolet A, et al. Fabrication and characterization of a thin coated adsorbent for antibiotic and analgesic adsorption: Experimental investigation and statistical physical modelling. Chem Eng J. 2020;401:126007. DOI: 10.1016/j.cej.2020.126007.10.1016/j.cej.2020.126007
  150. [150] Coughlin RW, Ezra FS. Role of surface acidity in the adsorption of organic pollutants on the surface of carbon. Environ Sci Technol. 1968;2:291-7. DOI: 10.1021/es60016a002.10.1021/es60016a002
  151. [151] Yi L, Zuo L, Wei C, Fu H, Qu X, Zheng S, et al. Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-π and π-π electron-donor-acceptor (EDA) interactions. Sci Total Environ. 2020;719:137389. DOI: 10.1016/j.scitotenv.2020.137389.10.1016/j.scitotenv.2020.13738932120097
  152. [152] Cunha MR, Lima EC, Lima DR, da Silva RS, Thue PS, Seliem MK, et al. Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: Use of activated carbon derived from Butia catarinensis. J Environ Chem Eng. 2020;8:104506. DOI: 10.1016/j.jece.2020.104506.10.1016/j.jece.2020.104506
  153. [153] Yu X, Sun W, Ni J. LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon. Environ Pollut. 2015;206:652-60. DOI: 10.1016/j.envpol.2015.08.031.10.1016/j.envpol.2015.08.03126319510
  154. [154] Gao B, Li P, Yang R, Li A, Yang H. Investigation of multiple adsorption mechanisms for efficient removal of ofloxacin from water using lignin-based adsorbents. Sci Rep. 2019;9:637. DOI: 10.1038/s41598-018-37206-1.10.1038/s41598-018-37206-1634605230679691
  155. [155] Choi K-J, Kim S-G, Kim C-W, Kim S-H. Determination of antibiotic compounds in water by on-line SPE-LC/MSD. Chemosphere. 2007;66:977-84. DOI: 10.1016/j.chemosphere.2006.07.037.10.1016/j.chemosphere.2006.07.03716949634
  156. [156] Hernández-Monje D, Giraldo L, Moreno-Piraján JC. Interaction between hydrocarbons C6 and modified activated carbons: Correlation between adsorption isotherms and immersion enthalpies. ACS Omega. 2019;4:19595-604. DOI: 10.1021/acsomega.9b02062.10.1021/acsomega.9b02062688183731788589
  157. [157] Kerkez-Kuyumcu Ö, Bayazit ŞS, Salam MA. Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. Ind Eng Chem Res. 2016;36:198-205. DOI: 10.1016/j.jiec.2016.01.04010.1016/j.jiec.2016.01.040
  158. [158] Faysal Hossain MD, Akther N, Zhou Y. Recent advancements in graphene adsorbents for wastewater treatment: Current status and challenges. Chin Chem Lett. 2020;31:2525-38. DOI: 10.1016/j.cclet.2020.05.011.10.1016/j.cclet.2020.05.011
  159. [159] Tessmer CH, Vidic RD, Uranowski LJ. Impact of oxygen-containing surface functional groups on activated carbon adsorption of phenols. Environ Sci Technol. 1997;31:1872-8. DOI: 10.1021/es960474r.10.1021/es960474r
  160. [160] Eder S, Müller K, Azzari P, Arcifa A, Peydayesh M, Nyström L. Mass transfer mechanism and equilibrium modelling of hydroxytyrosol adsorption on olive pit-derived activated carbon. Chem Eng J. 2021;404:126519. DOI: 10.1016/j.cej.2020.126519.10.1016/j.cej.2020.126519
  161. [161] Lu Q, George A. Sorial. Adsorption of phenolics on activated carbon-impact of pore size and molecular oxygen. Chemosphere. 2004;55:671-9. DOI: 10.1016/j.Chemosphere.2003.11.044.10.1016/j.chemosphere.2003.11.04415013672
  162. [162] Ang TN, Young BR, Taylor M, Burrell R, Aroua MK, Chen W-H, et al. Enrichment of surface oxygen functionalities on activated carbon for adsorptive removal of sevoflurane. Chemosphere. 2020;260:127496. DOI: 10.1016/j.chemosphere.2020.127496.10.1016/j.chemosphere.2020.12749632659541
  163. [163] Uranowski LJ, Tessmer CH, Vidic RD. The effect of surface metal oxides on activated carbon adsorption of phenolics. Water Res. 1998;32:1841-51. DOI: 10.1016/S0043-1354(97)00479-X.10.1016/S0043-1354(97)00479-X
  164. [164] Gu C, Karthikeyan KG. Interaction of tetracycline with aluminum and iron hydrous oxides. Environ Sci Technol. 2005;39:2660-7. DOI: 10.1021/es048603o.10.1021/es048603o15884363
  165. [165] Yang J, Dou Y, Yang H, Wang D. A novel porous carbon derived from CO2 for high-efficient tetracycline adsorption: Behavior and mechanism. App Surf Sci. 2021;538:148110. DOI: 10.1016/j.apsusc.2020.148110.10.1016/j.apsusc.2020.148110
  166. [166] Hu Y, Chen C, Yang L, Cui J, Hao Q, Sun D. Handy purifier based on bacterial cellulose and Ca-montmorillonite composites for efficient removal of dyes and antibiotics. Carbohydr Polym. 2019;222:115017. DOI: 10.1016/j.carbpol.2019.115017.10.1016/j.carbpol.2019.11501731320078
  167. [167] Liu N, Wang Mx, Liu Mm, Liu F, Weng L, Koopal LK, et al. Sorption of tetracycline on organo-montmorillonites. J Hazard Mater. 2012;225-226:28-35. DOI: 10.1016/j.jhazmat.2012.04.060.10.1016/j.jhazmat.2012.04.06022609390
  168. [168] Salaa F, Bendenia S, Lecomte-Nana GL, Khelifa A. Enhanced removal of diclofenac by an organohalloysite intercalated via a novel route: Performance and mechanism. Chem Eng J. 2020;396:125226. DOI: 10.1016/j.cej.2020.125226.10.1016/j.cej.2020.125226
  169. [169] Mosaleheh N, Sarvi MN. Minimizing the residual antimicrobial activity of tetracycline after adsorption into the montmorillonite: Effect of organic modification. Environ Res. 2020;182:109056. DOI: 10.1016/j.envres.2019.109056.10.1016/j.envres.2019.10905631884192
  170. [170] Ahmed MJ. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Environ Toxicol Pharmacol. 2017;50:1-10. DOI: 10.1016/j.etap.2017.01.004.10.1016/j.etap.2017.01.00428103518
  171. [171] Khawaja H, Zahir E, Asghar MA, Asghar MA. Graphene oxide decorated with cellulose and copper nanoparticle as an efficient adsorbent for the removal of malachite green. Int J Biol Macromol. 2021;167:23-34. DOI: 10.1016/j.ijbiomac.2020.11.137.10.1016/j.ijbiomac.2020.11.13733259838
  172. [172] Hamdaoui O, Naffrechoux E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater. 2007;147:381-94. DOI: 10.1016/j.jhazmat.2007.01.021.10.1016/j.jhazmat.2007.01.02117276594
  173. [173] Arellano-Cárdenas S, López-Cortez S, Cornejo-Mazón M, Mares-Gutiérrez JC. Study of malachite green adsorption by organically modified clay using a batch method. Appl Surf Sci. 2013;280:74-8. DOI: 10.1016/j.apsusc.2013.04.097.10.1016/j.apsusc.2013.04.097
  174. [174] Tran HV, Hoang LT, Huynh CD. An investigation on kinetic and thermodynamic parameters of methylene blue adsorption onto graphene-based nanocomposite. Chem Phys. 2020;535:110793. DOI: 10.1016/j.chemphys.2020.110793.10.1016/j.chemphys.2020.110793
  175. [175] Zembrzuska J, Ginter-Kramarczyk D, Zając A, Kruszelnicka I, Michałkiewicz M, Dymaczewski Z, et al. The influence of temperature changes in activated sludge processes on ibuprofen removal efficiency. Ecol Chem Eng S. 2019;26:357-66. DOI: 10.1515/eces-2019-0025.10.1515/eces-2019-0025
  176. [176] Hamilton AR, Roberts M, Hutcheon GA, Gaskell EE. Formulation and antibacterial properties of clay mineral-tetracycline and doxycycline composites. Appl Clay Sci. 2019;179:105148. DOI: 10.1016/j.clay.2019.105148.10.1016/j.clay.2019.105148
  177. [177] Porubcan LS, Serna CJ, White JL, Hem SL. Mechanism of adsorption of clindamycin and tetracycline by montmorillonite. J Pharm Sci. 1978;67:1081-7. DOI: 10.1002/jps.2600670815.10.1002/jps.260067081527625
  178. [178] Maged A, Iqbal J, Kharbish S, Ismael IS, Bhatnagar A. Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: Characterization, sorption and mechanistic studies. J Hazard Mater. 2020;384:121320. DOI: 10.1016/j.jhazmat.2019.121320.10.1016/j.jhazmat.2019.12132031610346
  179. [179] Wang H, Zhang J, Wang P, Yin L, Tian Y, Li J. Bifunctional copper modified graphitic carbon nitride catalysts for efficient tetracycline removal: Synergy of adsorption and photocatalytic degradation. Chin Chem Lett. 2020;31:2789-94. DOI: 10.1016/j.cclet.2020.07.043.10.1016/j.cclet.2020.07.043
  180. [180] Chang P-H, Li Z, Jean J-S, Jiang W-T, Wang C-J, Lin K-H. Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite. Appl Clay Sci. 2012;67-68:158-63. DOI: 10.1016/j.clay.2011.11.004.10.1016/j.clay.2011.11.004
  181. [181] Zhao Y, Gu X, Li S, Han R, Wang G. Insights into tetracycline adsorption onto kaolinite and montmorillonite: experiments and modeling. Environ Sci Pollut. 2015;22:17031-40. DOI: 10.1007/s11356-015-4839-2.10.1007/s11356-015-4839-226122570
  182. [182] Wang W, Lu T, Chen Y, Tian G, Sharma VK, Zhu Y, et al. Mesoporous silicate/carbon composites derived from dye-loaded palygorskite clay waste for efficient removal of organic contaminants. Sci Total Environ. 2019;696:133955. DOI: 10.1016/j.scitotenv.2019.133955.10.1016/j.scitotenv.2019.13395531446286
  183. [183] Parolo ME, Savini MC, Vallés JM, Baschini MT, Avena MJ. Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl Clay Sci. 2008;40:179-86. DOI: 10.1016/j.clay.2007.08.003.10.1016/j.clay.2007.08.003
  184. [184] Abdel-Karim A, El-Naggar ME, Radwan EK, Mohamed IM, Azaam M, Kenawy E-R. High-performance mixed-matrix membranes enabled by organically/inorganic modified montmorillonite for the treatment of hazardous textile wastewater. Chem Eng J. 2021;405:126964. DOI: 10.1016/j.cej.2020.126964.10.1016/j.cej.2020.126964
  185. [185] Zhao Y, Tong F, Gu X, Gu C, Wang X, Zhang Y. Insights into tetracycline adsorption onto goethite: Experiments and modeling. Sci Total Environ. 2014;470-471:19. DOI: 10.1016/j.scitotenv.2013.09.059.10.1016/j.scitotenv.2013.09.05924121660
  186. [186] Gopal G, Sankar H, Natarajan C, Mukherjee A. Tetracycline removal using green synthesized bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite: A comparative study. J Environ Manage. 2020;254:109812. DOI: 10.1016/j.jenvman.2019.109812.10.1016/j.jenvman.2019.10981231733482
  187. [187] Huang L, Sun Y, Wang W, Yue Q, Yang T. Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC). Chem Eng J. 2011;171:1446-53. DOI: 10.1016/j.cej.2011.05.041.10.1016/j.cej.2011.05.041
  188. [188] Chang J, Shen Z, Hu X, Schulman E, Cui C, Guo Q, et al. Adsorption of tetracycline by shrimp shell waste from aqueous solutions: adsorption isotherm, kinetics modeling, and mechanism. ACS Omega. 2020;5:3467-77. DOI: 10.1021/acsomega.9b03781.10.1021/acsomega.9b03781704549732118161
  189. [189] Kim S, Eichhorn P, Jensen JN, Weber AS, Aga DS. Removal of antibiotics in wastewater:  effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ Sci Technol. 2005;39:5816-23. DOI: 10.1021/es050006u.10.1021/es050006u16124320
  190. [190] Zhang L, Song X, Liu X, Yang L, Pan F, Lv J. Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem Eng J. 2011;178:26-33. DOI: 10.1016/j.cej.2011.09.127.10.1016/j.cej.2011.09.127
  191. [191] Ofudje EA, Adeogun IA, Idowu MA, Kareem SO, Ndukwe NA. Simultaneous removals of cadmium(II) ions and reactive yellow 4 dye from aqueous solution by bone meal-derived apatite: kinetics, equilibrium and thermodynamic evaluations. Anal Sci Technol. 2020;11:7. DOI: 10.1186/s40543-020-0206-0.10.1186/s40543-020-0206-0
  192. [192] Shao L, Ren Z, Zhang G, Chen L. Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal. Mater Chem Phys. 2012;135:16-24. DOI: 10.1016/j.matchemphys.2012.03.035.10.1016/j.matchemphys.2012.03.035
  193. [193] Aswin Kumar I, Viswanathan N. Fabrication of zirconium(IV) cross-linked alginate/kaolin hybrid beads for nitrate and phosphate retention. Arab J Chem. 2020;13:4111-25. DOI: 10.1016/j.arabjc.2019.06.006.10.1016/j.arabjc.2019.06.006
DOI: https://doi.org/10.2478/eces-2021-0021 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 303 - 328
Published on: Oct 11, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Souhila Ait Hamoudi, Boualem Hamdi, Jocelyne Brendlé, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.