Have a personal or library account? Click to login
Mycoremediation of Soil Contaminated with Cadmium and Lead by Trichoderma sp. Cover

Mycoremediation of Soil Contaminated with Cadmium and Lead by Trichoderma sp.

Open Access
|Jul 2021

References

  1. [1] Charlesworth S, De Miguel E, Ordóńez A. A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ Geochem Health. 2011;33:103-23. DOI: 10.1007/s10653-010-9325-7.10.1007/s10653-010-9325-7
  2. [2] Cui Y, Zhu YG, Zhai R, Huang Y, Qiu Y, Liang J. Exposure to metal mixtures and human health impacts in a contaminated area inNanning, China. EnvironInt. 2005;31(6):784-90. DOI: 10.1016/j.envint.2005.05.025.10.1016/j.envint.2005.05.025
  3. [3] Majer BJ, Tscherko D, Paschke A, Wennrich R, Kundi M, Kandeler E, et al. Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutat Res. 2002;515:111-24. DOI: 10.1016/s1383-5718(02)00004-9.10.1016/S1383-5718(02)00004-9
  4. [4] Pérez-de-Mora A, Madejón E, Burgos P, Cabrera F. Trace element availability and plant growth in a mine-spill contaminated soil under assisted natural remediation I. Soils. Sci Total Environ. 2006;363(1-3):28-37. DOI: 10.1016/j.scitotenv.2005.10.015.10.1016/j.scitotenv.2005.10.01516581109
  5. [5] Khalil M. Efficiency of Trichoderma viride and Bacillus subtilis as biocontrol agents against root rot caused by Fusarium solani intomato. EgyptianJ Agric Res. 2019;97:507-16. DOI: 10.21608/ejar.2019.151891.10.21608/ejar.2019.151891
  6. [6] Saba H, Vibhash D, Manisha M, Prashant KS, Farhan H, Tauseef A. Trichoderma - a promising plant growth stimulator and biocontrol agent. Mycosphere. 2012;3(4):524-31. DOI: 10.5943/mycosphere/3/4/14.10.5943/mycosphere/3/4/14
  7. [7] Wang L, Li X. Steering soil microbiome to enhance soil system resilience. Crit Rev Microbiol. 2019;45:5-6. DOI: 10.1080/1040841X.2019.1700906.10.1080/1040841X.2019.170090631833440
  8. [8] Ali EH, Hashem M. Removal efficiency of the heavy metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at different pH values and temperature degrees. Mycobiology. 2007;35(3):135-44. DOI: 10.4489/MYCO.2007.35.3.135.10.4489/MYCO.2007.35.3.135376314124015084
  9. [9] Sahu A, Mandal A, Thakur J, Manna MC, Subba Rao A. Exploring bioaccumulation efficacy of Trichoderma viridae: Analternative bioremediationof cadmium and lead. Natl Acad Sci Lett. 2012;35(4):299-302. DOI: 10.1007/s40009-012-0056-4.10.1007/s40009-012-0056-4
  10. [10] Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett. 2006;254(2):173-81. DOI: 10.1111/j.1574-6968.2005.00044.x.10.1111/j.1574-6968.2005.00044.x16445743
  11. [11] Colpaert JV, Wevers JH, Krznaric E, Adriaensen K. How metaltolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annals Forest Sci. 2011;68(1):17-24. DOI: 10.1007/s13595-010-0003-9.10.1007/s13595-010-0003-9
  12. [12] Luo ZB, Chenhan Wu C, Zhang C, Li H, Lipka U, Polle A. The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environ Exper Bot. 2014;108:47-62. DOI: 10.1016/j.envexpbot.2013.10.018.10.1016/j.envexpbot.2013.10.018
  13. [13] Schlunk I, Krause K, Wirth S, Kothe E. A transporter for abiotic stress and plant metabolite resistance in the ectomycorrhizal fungus Tricholoma vaccinum. Environ Sci Pollut Res Int. 2015;22(24):19384-93. DOI: 10.1007/s11356-014-4044-8.10.1007/s11356-014-4044-825563836
  14. [14] Schützendübel A, Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Botany. 2002;53:1351-1365. DOI: 10.1093/jexbot/53.372.1351.10.1093/jexbot/53.372.1351
  15. [15] Krupa P, Kozdrój J. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut. 2007;182:83-90. DOI: 10.1007/s11270-006-9323-7.10.1007/s11270-006-9323-7
  16. [16] Cabała J, Krupa P, Misz-Kennan M. Heavy metals in mycorrhizal rhizospheres contaminated by Zn-Pb mining and smelting around Olkusz in southern Poland. Water Air Soil Pollut. 2009;199:139-49. DOI: 10.1007/s11270-008-9866-x.10.1007/s11270-008-9866-x
  17. [17] Bano SA, Ashfaq D. Role of mycorrhiza to reduce heavy metal stress. Nat Sci. 2013;5(12A):16-20. DOI: 10.4236/ns.2013.512A003.10.4236/ns.2013.512A003
  18. [18] Bandurska K, Krupa P, Berdowska A, Marczak M. Adaptation of selected ectomycorrhizal fungi to increased concentration of cadmium and lead. Ecol Chem Eng S. 2016;23(3):483-91. DOI: 10.1515/eces-2016-0035.10.1515/eces-2016-0035
  19. [19] Weindling R. Trichoderma lignorum as parasite of other soil fungi. Phytopathology. 1932;22:837-45.
  20. [20] Benìtez T, Rincòn AM, Limòn MC, Codòn AC. Biocontrol mechanisms of Trichoderma strains. Int Microbiol. 2004;7(4):249-60. Available from: https://scielo.isciii.es/pdf/im/v7n4/Benitez.pdf.
  21. [21] John RP, Tyagi RD, Prévost D, Brar SK, Pouleur S, Surampalli RY. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot. 2010;29(12):1452-9. DOI: 10.1016/j.cropro.2010.08.004.10.1016/j.cropro.2010.08.004
  22. [22] Chetan K, Sandhya M, Sarma BK, Singh SP, Singh HB. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol. 2014;98:533-44. DOI: 10.1007/s00253-013-5344-5.10.1007/s00253-013-5344-524276619
  23. [23] Zin NA, Badaluddin NA. Biological functions of Trichoderma spp. for agriculture applications. Ann Agric Sci. 2020;65(2):168-78. DOI: 10.1016/j.aoas.2020.09.003.10.1016/j.aoas.2020.09.003
  24. [24] Alfano G, Lewis Ivey MLC, Cakir C, Bos JIB, Miller SA, Madden LV, et al. Systemic modulation of gene expression in tomato by Trichoderma hamatum. Phytopathology. 2007;97:429-37. DOI: 10.1094/PHYTO-97-4-0429.10.1094/PHYTO-97-4-0429
  25. [25] Violante A, Cozzolino V, Perelomo L, Caporale AG, Pigna M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr. 2010;10(3):268-92. DOI: 10.4067/S0718-95162010000100005.10.4067/S0718-95162010000100005
  26. [26] Tchounwou P, Yedjou C, Patlolla A, Sutton D. Heavy metal toxicity and the environment. In: Luch A, editor. Molecular, Clinical and Environmental Toxicology. Experientia supplementum. Basel: Springer; 2012;101. DOI: 10.1007/978-3-7643-8340-4_6.10.1007/978-3-7643-8340-4_6
  27. [27] Tessier A, Cambell PG, Bisson M. Sequential extraction procedure for the speciation of particulate tracemetals. Anal Chem. 1979;51(7):844-51. DOI: 10.1021/ac50043a017.10.1021/ac50043a017
  28. [28] Bień J, Chlebowska-Ojrzyńska M, Zabochnicka-Świątek M. Ekstrakcja sekwencyjna w osadach ściekowych (Sequential extraction in sewage sludge). Proc ECOpole. 2011;5(1):173-8. Available from: https://drive.google.com/drive/folders/1tpAJ9F051yIW0vm3j0S6hbzez4q31QeD.
  29. [29] Kawai M. Artifical ectomicorrhiza formation on roots of air-layered Pinus densiflora saplings by inoculaton with Lycophyllum shimeji. Mycologia. 1997;89(2):228-32. DOI: 10.2307/3761075.10.2307/3761075
  30. [30] Bandurska K, Krupa P, Berdowska A, Jatulewicz I. Use of saprophytic fungi specimens as a plant protection agents in tomatoe plantation. Ecol Eng. 2015;43:88-93. DOI: 10.12912/23920629/58908.10.12912/23920629/58908
  31. [31] Polish Standard PN-ISO 10390:1997. Soil quality. Determination of pH. Polish Committee for Standardization, Warszawa. Available from: https://sklep.pkn.pl/pn-iso-10390-1997p.html.
  32. [32] Sastre J, Sahuquillo A, Vidal M, Rauret G. Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Anal Chim Acta. 2002; 462(1):59-72. DOI: 10.1016/S0003-2670(02)00307-0.10.1016/S0003-2670(02)00307-0
  33. [33] Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019;6730305. DOI: 10.1155/2019/6730305.10.1155/2019/6730305
  34. [34] Wang S, Wu Q-S, He X-H. Exogenous easily extractable glomalin-related soil protein promotes soil aggregation, relevant soil enzyme activities and plant growth in trifoliate orange. Plant Soil Environ. 2015;61(2):66-71. DOI: 10.17221/833/2014-PSE.10.17221/833/2014-PSE
  35. [35] Holda A, Kisielowska E. Biological removal of Cr(VI) ions from aqueous solutions by Trichoderma viride. Physicochem Probl Miner Process. 2013;49(1):47-60. DOI: 10.5277/ppmp130105.
  36. [36] Kacprzak M, Rosikoń K, Fijałkowski K, Grobelak A. The effect of Trichoderma on heavy metal mobility and uptake by Miscanthus giganteus, Salix sp., Phalaris arundinacea, and Panicum virgatum. Appl Environ Soil Sci. 2014;506142. DOI: 10.1155/2014/506142.10.1155/2014/506142
DOI: https://doi.org/10.2478/eces-2021-0020 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 277 - 286
Published on: Jul 23, 2021
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Katarzyna Bandurska, Piotr Krupa, Agnieszka Berdowska, Igor Jatulewicz, Iwona Zawierucha, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.