Have a personal or library account? Click to login
Heat Recovery of Compost Reactors: Field Study of Operational Behaviour, Heating Power and Influence Factors Cover

Heat Recovery of Compost Reactors: Field Study of Operational Behaviour, Heating Power and Influence Factors

Open Access
|Jul 2021

References

  1. [1] 52016DC0051:2016-02. EU Strategy on Heating and Cooling. European Commission. Communication from the Commission to the European Parliament, the Council, the European economic and social committee and the Committee of the Regions. Available from: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52016DC0051.
  2. [2] Federal Ministry of Economic Affairs and Energy. Time series for the development of renewable energy sources in Germany 1990-2021. Berlin: 2021. Available from: https://www.erneuerbareenergien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.htmlen.pdf;jsessionid=7E3EC118E76717EF6EC854AEEC411E27?__blob=publicationFile&v=13.
  3. [3] 32018L2001:2018-12. The promotion of the use of energy from renewable sources. European Parliament and of the Council. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018L2001.
  4. [4] Federal Ministry of Science and Education. Bioökonomie in Deutschland (Bioeconomy in Germany). Bonn, Berlin: 2014. Available from: https://www.bmbf.de/upload_filestore/pub/Biooekonomie_in_Deutschland.pdf.
  5. [5] Brosowski A, Brosowski A, Thrän D, Mantau U, Mahro B, Erdmann G, et al. A review of biomass potential and current utilisation; Status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy. 2016;95:257-72. DOI: 10.1016/j.biombioe.2016.10.017.10.1016/j.biombioe.2016.10.017
  6. [6] Osterburg B, Schüler M, Klages S. Auswirkungen der Novelle der Düngeverordnung auf die Kompostanwendung in der Landwirtschaft (Effects of the Fertilizer Directive Novel on the Application of Compost in Agriculture). Braunschweig: Thünen-Institut; 2016. Available from: https://www.kompost.de/fileadmin/user_upload/Dateien/HUK-Dateien/1_2_2016/Kompost_und_DueVNovelle_Zwischenbericht_1_2016_v6.pdf.
  7. [7] 31991L0676:1991-12/2008. Protection of waters against pollution caused by nitrates from agricultural sources. European Council Directive. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31991L0676.
  8. [8] Richter F, Kern M, Raussen T, Wagner J. Optimierung der Erfassung, Aufbereitung und stofflich-energetischen Verwertung von Grüngut in Deutschland (Optimization of the collection, processing and material and energy recovery of green waste in Germany). Witzenhausen: Witzenhausen-Institut; 2019. Available from: https://www.energetische-biomassenutzung.de/fileadmin/Steckbriefe/dokumente/03KB107_Gr%C3%BCn-OPTI_Schlussbericht.pdf.10.37307/j.1863-9763.2018.03.03
  9. [9] Hoffman H, Kern M. Weiterentwicklung der stofflichen und energetischen Verwertung von Biomasse beim Zweckverband regionale Abfallwirtschaft (Further development of the material and energetic utilization of biomass at the association of regional waste management). Witzenhausen: Witzenhausen-Institut; 2011. Available from: http://regent.art-trier.de/upload/dokumente/10372.pdf.
  10. [10] Smith MM, Aber JD, Rynk R. Heat recovery from composting: A comprehensive review of system design, recovery rate, and utilization. Compost Sci Utilization. 2016;0:1-12. DOI: 10.1080/1065657X.2016.1233082.10.1080/1065657X.2016.1233082
  11. [11] Müller N. Untersuchung zum Betriebsverhalten von Biomeilern (Operational Behaviour of Compost Reactors with Heat Recovery). Dresden: Technical Universiät Dresden; 2017. Available from: https://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa2-709495.
  12. [12] Zhao R, Guo H, Gao W, Tong G. Literature Review on Composting Heat Recovery. CSBE/SCGAB 2015 Annual Conf. Edmonton, Alberta: The Canadian Society for Bioengineering; 2015. Available from: https://library.csbe-scgab.ca/docs/meetings/2015/CSBE15136.pdf.
  13. [13] Petiot C, De Guardia A. Composting in a laboratory reactor: A review. Compost Sci Utilization. 2004;12:69-79. DOI: 10.1080/1065657X.2004.10702160.10.1080/1065657X.2004.10702160
  14. [14] Wang Y, Pang L, Liu X, Wang Y, Zhou K, Luo F. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor. Bioresour Technol. 2016;206:164-72. DOI: 10.1016/j.biortech.2016.01.097.10.1016/j.biortech.2016.01.097
  15. [15] Lashermes G, Barriuso E, Le Villio-Poitrenaud M, Houot S. Composting in small laboratory pilots; Performance and reproducibility. Waste Manage. 2012;32:271-7. DOI: 10.1016/j.wasman.2011.09.011.10.1016/j.wasman.2011.09.011
  16. [16] Fulford B. The Composting Greenhouse at New Alchemy Institute: A Report on Two Years of Operation and Monitoring March 1984-January 1986. Hatchville: New Alchemy Institute; 1986. ISBN: 093382209X.
  17. [17] DE3932765A1:1991-09. Bio:heat incubator; Heats greenhouse using hot air from rotting compost. Patent. Available from: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE000003932765A1.
  18. [18] Schuchardt F. Wärmeentzug bei der Kompostierung von Schnittholz (Heat extraction during composting of greencut wood). Landbauforschung Völkenrode. 1984;34:189-95. Available from: https://literatur.thuenen.de/digbib_extern/dk016224.pdf.
  19. [19] Schuchardt F. Versuche zum Wärmeentzug aus Festmist. Landbauforschung Völken-Rode. 1983;33:169-78. Available from: https://literatur.thuenen.de/digbib_extern/dk001577.pdf.
  20. [20] Vemmelund N, Berthelsen L. A note on heat recovery from mechanically aerated farm-yard manure. Agricultural Wastes. 1979;1:157-60. Available from: https://www.sciencedirect.com/journal/agricultural-wastes/vol/1/issue/2.10.1016/0141-4607(79)90049-0
  21. [21] Viel M, Sayag D, Peyre A, André L. Optimization of in-vessel co-composting through heat recovery. Biological Wastes. 1987;20:167-85. DOI: 10.1016/0269-7483(87)90152-2.10.1016/0269-7483(87)90152-2
  22. [22] Winship EAN, Holmes D, Notion D. Combined heat and composting; In moving organic waste recycling toward resource management and biobased economy. Orbit 6th International Conference - Moving Organic Waste Recycling towards Resource Management and for Biobased Economy, 2008;1451-1463. Wageningen, Netherlands. Available from: https://www.researchgate.net/profile/Marina-Rodriguez-Diaz/publication/266509055_effect_of_urban_sewage_sludge_compost_on_bacterial_biodiversity_and_soil_enzymatic_activities/links/5433c4620cf2dc341dada0b3/effect-of-urban-sewage-sludge-compost-on-bacterial-biodiversity-and-soil-enzymatic-activities.pdf.
  23. [23] Smith M, Aber J. Heat Recovery from Compost; Guide to Building an Aerated Static Pile Heat Recovery Composting Facility. New Hampshire: University of New Hampshire; 2017. DOI: 10.13140/RG.2.2.22893.23520.
  24. [24] Di Maria F, Postrioti L, Micale C, Sordi A, Marconi M. Energy recovery from low temperature heat produced during aerobic biological treatment. Energy Procedia. 2014;45:81-90. DOI: 10.1016/j.egypro.2014.01.010.10.1016/j.egypro.2014.01.010
  25. [25] Irvine G, Lamont ER, Antizar-Ladislao B. Energy from waste; Reuse of compost heat as a source of renewable energy. Int J Chem Eng. 2010;ID627930. DOI: 10.1155/2010/627930.10.1155/2010/627930
  26. [26] Di Maria F, Benavoli M, Zappitelli M. Thermodynamic analysis of the energy recovery from the aerobic bioconversion of solid urban waste organic fraction. Waste Manage. 2008;28:805-12. DOI: 10.1016/j.wasman.2007.03.021.10.1016/j.wasman.2007.03.02117512716
  27. [27] Soyez K, Koller M. Verfahrensentwicklung zur Kopplung von Kompostierung und Gewächshausproduktion- BMBF-Verbundvorhaben „Neue Techniken zur Kompostierung“ Teilvorhaben TV3/1-3 (Process development for the integration of composting and greenhouse production - BMBF joint "New techniques for composting" TV3/1-3). Potsdam: German Environmental Agency; 1996. Available from: http://worldcat.org/identities/viaf-148589293.
  28. [28] Jaccard L, Lehmann P, Civilini M, Bertoldi M de. Yard waste composting with heat recovery. Compost Sci Utilization. 1993;1:10-4. DOI: 10.1080/1065657X.1993.10757882.10.1080/1065657X.1993.10757882
  29. [29] Seki H, Komori T. Packed-column-type heating tower for recovery of heat generated in compost. J Agricult Meteorology. 1992;48:237-46. DOI: 10.2480/agrmet.48.237.10.2480/agrmet.48.237
  30. [30] Konrad K. Einfache und verlässliche Berechnung des oTS-Abbaugrades in Biogasanlagen (Simple and reliable calculation of the oTS degradation level in biogas plants). Biogas Forum Bayern III -16/2015, Hrsg. ALBBayern e.V. Available from: http://www.biogas-forum-bayern.de/media/files/0001/Einfache-undverlassliche-Berechnung-des-oTS-Abbaugrades-in-Biogasanlagen.pdf.
  31. [31] Epstein E. Industrial Composting; Environmental Engineering and Facilities Management. Boca Raton: CRC Press Inc; 2011. ISBN: 9781439845318.
  32. [32] Schmidt-Baum T, Jaschke N. Mehrkammer-Biomeiler. Neue Möglichkeiten zur Schließung regionaler Energie- und Stoffkreisläufe durch flammenlose energetische Nutzung von Reststoffen (Multi-chamber compost reactor; New possibilities for closing regional energy and material cycles through flameless energetic use of residual materials). Rostocker Bioenergieforum. 2020:329-39. Rostock: Nelles M; 2020. Available from: https://bioenergieforum.auf.uni-rostock.de/files/Tagungsband.pdf.
  33. [33] DIN EN ISO 17828:2016-05. Solid biofuels - Determination of bulk density. Available from: https://www.beuth.de/de/norm/din-en-15103/124227785.
  34. [34] DIN EN ISO 18134-1:2015-12. Solid biofuels - Determination of moisture content - Oven dry method - Part 1: Total moisture - Reference method. Available from: https://www.beuth.de/de/norm/din-en-iso-18134-1/232359808.
  35. [35] DIN EN ISO 16948:2015-09. Solid biofuels - Determination of total content of carbon, hydrogen and nitrogen. Available from: https://www.beuth.de/de/norm/din-en-iso-16948/222780653.
  36. [36] DIN EN ISO 18125:2017-08. Solid biofuels - Determination of calorific value. Available from: https://www.beuth.de/de/norm/din-en-iso-18125/266725966.
  37. [37] DIN EN ISO 17827-1:2016-10. Solid biofuels - Determination of particle size distribution for uncompressed fuels - Part 1: Oscillating screen method using sieves with apertures of 3,15 mm and above. Available from: https://www.beuth.de/de/norm/din-en-iso-17827-1/242406902.
  38. [38] DIN EN ISO 18122:2016-03. Solid biofuels - Determination of ash content. Available from: https://www.beuth.de/de/norm/din-en-iso-18122/233573333.
  39. [39] Brummack J. Das Dombelüftungsverfahren; Ein vielseitig einsetzbares Belüftungsverfahren für offene Rottemieten auch nach 2005 (The dome aeration process; A versatile aeration process for outdoor rotting windrows even after year 2005). Abfallforschungstage 2004. Karlsruhe: Wasteconsult; 2004. Available from: http://www.wasteconsult.net/files/downloads/2004-E18_Brummack%20Dombelueftung1.pdf.
  40. [40] Nwanze K, Clark G. Optimizing heat extraction from compost. Compost Sci Utilization. 2015;27:1-10. DOI: 10.1080/1065657X.2019.1686443.10.1080/1065657X.2019.1686443
  41. [41] Lekic S. Possibilities of Heat Recovery from Waste Composting Process. Cambridge: University of Cambridge, Centre for Sustainable Development; 2005. Available from: https://www-esdmphil.eng.cam.ac.uk/about-the-programme/dissertations/students/SnezanaLekic.
DOI: https://doi.org/10.2478/eces-2021-0015 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 201 - 217
Published on: Jul 23, 2021
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Nele Jaschke, Torsten Schmidt-Baum, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.