Have a personal or library account? Click to login
Passive and Active Biomonitoring of Atmospheric Aerosol with the Use of Mosses Cover

Passive and Active Biomonitoring of Atmospheric Aerosol with the Use of Mosses

Open Access
|Jul 2021

References

  1. [1] Markert B, Wappelhorst O, Weckert V, Herpin U, Siewers U, Friese K, et al. The use of bioindicators for monitoring the heavy-metal status of the environment. J Radioanal Nucl Chem. 1999;240:425-9. DOI: 10.1007/BF02349387.10.1007/BF02349387
  2. [2] Vingiani S, De Nicola F, Purvis WO, Concha-Graña E, Muniategui-Lorenzo S, López-Mahía P, et al. Active biomonitoring of heavy metals and PAHs with mosses and lichens: A case study in the cities of Naples and London. Water Air Soil Pollut. 2015;226(8):240. DOI: 10.1007/s11270-015-2504-5.10.1007/s11270-015-2504-5
  3. [3] Ciesielczuk T, Olszowski T, Prokop M, Kłos A. Application of mosses to identification of emission sources of polycyclic aromatic hydrocarbons. Ecol Chem Eng S. 2012;19(4):585-95. DOI: 10.2478/v10216-011-0041-8.10.2478/v10216-011-0041-8
  4. [4] Shvetsova MS, Kamanina IZ, Frontasyeva MV, Madadzada AI, Zinicovscaia II, Pavlov SS, et al. Active moss biomonitoring using the “Moss Bag Technique” in the park of Moscow. Phys Part Nuclei Lett. 2019;16:994-1003. DOI: 10.1134/S1547477119060293.10.1134/S1547477119060293
  5. [5] Kosior G, Samecka-Cymerman A, Brudzińska-Kosior A. Transplanted moss hylocomium splendens as a bioaccumulator of trace elements from different categories of sampling sites in the Upper Silesia Area (SW Poland): Bulk and dry deposition impact. Bull Environ Contam Toxicol. 2018;101:479-85. DOI: 10.1007/s00128-018-2429-y.10.1007/s00128-018-2429-y615402330206646
  6. [6] Zawadzki K, Samecka-Cymerman A, Kolon K, Wojtuń B, Mróz L, Kempers AJ. Metals in Pleurozium schreberi and Polytrichum commune from areas with various levels of pollution. Environ Sci Pollut Res. 2016;23:11100-8. DOI: 10.1007/s11356-016-6278-0.10.1007/s11356-016-6278-0488457326910826
  7. [7] Rajfur M. Algae - heavy metals biosorbent. Ecol Chem Eng S. 2013;20(1):23-40. DOI: 10.2478/eces-2013-0002.10.2478/eces-2013-0002
  8. [8] Świsłowski P, Rajfur M, Wacławek M. Influence of heavy metal concentration on chlorophyll content in Pleurozium schreberi mosses. Ecol Chem Eng S. 2020;27(4):591-601. DOI: 10.2478/eces-2020-0037.10.2478/eces-2020-0037
  9. [9] Macedo-Miranda G, Avila-Pérez P, Gil-Vargas P, Zarazua G, Sanchez-Meza JC, Zepeda-Gomez C, et al. Accumulation of heavy metals in mosses: a biomonitoring study. SpringerPlus. 2016;5:715. DOI: 10.1186/s40064-016-2524-7.10.1186/s40064-016-2524-7490808527375984
  10. [10] Kawser AM, Baki MA, Kundu GK, Islam MdS, Islam MdM, Hossain MdM. Human health risks from heavy metals in fish of Buriganga river, Bangladesh. SpringerPlus. 2016;5:1697. DOI: 10.1186/s40064-016-3357-0.10.1186/s40064-016-3357-0504786527757369
  11. [11] Noh K, Thi LT, Jeong BR. Particulate matter in the cultivation area may contaminate leafy vegetables with heavy metals above safe levels in Korea. Environ Sci Pollut Res. 2019;26:25762-74. DOI: 10.1007/s11356-019-05825-4.10.1007/s11356-019-05825-4671718631267404
  12. [12] Vetrimurugan E, Brindha K, Elango L, Ndwandwe OM. Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Appl Water Sci. 2017;7:3267-80. DOI: 10.1007/s13201-016-0472-6.10.1007/s13201-016-0472-6
  13. [13] Grodzińska K, Frontasyeva M, Szarek-Łukaszewska G, Klich M, Kucharska-Fabiś A, Gundorina SF, et al. Trace element contamination in industrial regions of poland studied by moss monitoring. Environ Monit Assess. 2003;87:255-70. DOI: 10.1023/A:1024871310926.10.1023/A:1024871310926
  14. [14] Szczepaniak K, Astel A, Bode P, Sarbu C, Biziuk M, Raińska E, et al. Assessment of atmospheric inorganic pollution in the urban region of Gdańsk, Northern Poland. J Radioanal Nucl Chem. 2006;270:35-42. DOI: 10.1007/s10967-006-0418-9.10.1007/s10967-006-0418-9
  15. [15] Boryło A, Romańczyk G, Skwarzec B. Lichens and mosses as polonium and uranium biomonitors on Sobieszewo Island. J Radioanal Nucl Chem. 2017;311:859-69. DOI: 10.1007/s10967-016-5079-8.10.1007/s10967-016-5079-8521903528111489
  16. [16] Kapusta P, Stanek M, Szarek-Łukaszewska G, Godzik B. Long-term moss monitoring of atmospheric deposition near a large steelworks reveals the growing importance of local non-industrial sources of pollution. Chemosphere. 2019;230:29-39. DOI: 10.1016/j.chemosphere.2019.05.058.10.1016/j.chemosphere.2019.05.05831102869
  17. [17] Qarri F, Lazo P, Allajbeu S, Bekteshi L, Kane S, Stafilov T. The evaluation of air quality in Albania by moss biomonitoring and metals atmospheric deposition. Arch Environ Contam Toxicol. 2019;76:554-71. DOI: 10.1007/s00244-019-00608-x.10.1007/s00244-019-00608-x30805682
  18. [18] Lazo P, Stafilov T, Qarri F, Allajbeu S, Bekteshi L, Frontasyeva M, et al. Spatial distribution and temporal trend of airborne trace metal deposition in Albania studied by moss biomonitoring. Ecol Indicat. 2019;101:1007-17. DOI: 10.1016/j.ecolind.2018.11.053.10.1016/j.ecolind.2018.11.053
  19. [19] Maxhuni A, Lazo P, Kane S, Quarri F, Marku E, Harmens H. First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring. Environ Sci Pollut Res. 2016;23:744-55. DOI: 10.1007/s11356-015-5257-1.10.1007/s11356-015-5257-126336845
  20. [20] Chaligava O, Shetekauri S, Badawy WM, Frontasyeva MV, Zinicovscaia I, Shetekauri T, et al. Characterization of trace elements in atmospheric deposition studied by moss biomonitoring in Georgia. Arch Environ Contam Toxicol. 2021;80:350-67. DOI: 10.1007/s00244-020-00788-x.10.1007/s00244-020-00788-x33236186
  21. [21] Gallego-Cartagena E, Morillas H, Carrero JA, Madariaga JM, Maguregui M. Naturally growing grimmiaceae family mosses as passive biomonitory of heavy metals pollution in urban-industrial atmospheres from the Bilbao Metropolitan area. Chemosphere. 2021;263:128190. DOI: 10.1016/j.chemosphere.2020.128190.10.1016/j.chemosphere.2020.12819033297155
  22. [22] Cowden P, Aherne J. Assessment of atmospheric metal deposition by moss biomonitoring in aregion under the influence of a long standing active aluminium smelter. Atmosph Environ. 2019;201:84-91. DOI: 10.1016/j.atmosenv.2018.12.022.10.1016/j.atmosenv.2018.12.022
  23. [23] Špirić Z, Vučković I, Stafilov T, Kusan V, Beceva K. Biomonitoring of air pollution with mercury in Croatia by using moss species and CV-AAS. Environ Monit Assess. 2014;186:4357-66. DOI: 10.1007/s10661-014-3704-y.10.1007/s10661-014-3704-y24733436
  24. [24] Castello MA. Comparison between two moss species used as transplants for airborne trace element biomonitoring in NE Italy. Environ Monit Assess. 2007;133:267-76. DOI: 10.1007/s10661-006-9579-9.10.1007/s10661-006-9579-917268923
  25. [25] Aničić Urošević M, Vuković G, Jovanović P, Vujičić M, Sabovljević A, Sabovljević M, et al. Urban background of air pollution: evaluation through moss bag biomonitoring of trace elements in Botanical garden. Urban Forestry Urban Greening. 2017;25:1-10. DOI: 10.1016/j.ufug.2017.04.016.10.1016/j.ufug.2017.04.016
  26. [26] Coskun M, Steinnes E, Coskun M, Cayir A. Comparison of epigeic moss (Hypnum cupressiforme) and lichen (Cladonia rangiformis) as biomonitor species of atmospheric metal deposition. Bull Environ Contam Toxicol. 2009;82:1-5. DOI: 10.1007/s00128-008-9491-9.10.1007/s00128-008-9491-918592121
  27. [27] Kolon K, Samecka-Cymerman A, Kempers AJ., Mróz L. Pleurozium schreberi of the Tatra mountains (Poland) used as a bioindicational system for observing long range atmospheric transport of chemical elements. J Atmos Chem. 2010;66:157-66. DOI: 10.1007/s10874-011-9198-x.10.1007/s10874-011-9198-x
  28. [28] Dołęgowska S, Migaszewski ZM. Biomonitoring with mosses: Uncertainties related to sampling period, intrasite variability, and cleaning treatments. Ecol Indicat. 2019;101:296-302. DOI: 10.1016/j.ecolind.2019.01.033.10.1016/j.ecolind.2019.01.033
  29. [29] Szarek-Łukaszewska G, Grodzińska K, Braniewski S. Heavy metal concentration in the moss Pleurozium schreberi in the Niepołomice Forest, Poland: Changes during 20 years. Environ Monit Assess. 2002;79:231-7. DOI: 10.1023/A:1020226526451.10.1023/A:1020226526451
  30. [30] Zechmeister HG, Riss A, Hanus-Illnar A. Biomonitoring of atmospheric heavy metal deposition by mosses in the vicinity of industrial sites. J Atmos Chem. 2004;49:461-77. DOI: 10.1007/s10874-004-1260-5.10.1007/s10874-004-1260-5
  31. [31] Samecka-Cymerman A, Kosior G, Kolon K, Wojtuń B, Zawadzki K, Rudecki A, et al. Pleurozium schreberi as bioindicator of mercury pollution in heavily industrialized region. J Atmos Chem. 2013;70:105-14. DOI: 10.1007/s10874-013-9256-7.10.1007/s10874-013-9256-7
  32. [32] ICP Vegetation, 2015. Heavy metals, nitrogen and pops in European mosses: 2015 survey. Available from: https://icpvegetation.ceh.ac.uk/sites/default/files/MossmonitoringMANUAL-2015-17.07.14.pdf.
  33. [33] Jiang Y, Fan M, Hu R, Zhao J, Wu Y. Mosses are better than leaves of vascular plants in monitoring atmospheric heavy metal pollution in urban areas. Inter J Environ Res Public Health. 2018;15:1105. DOI: 10.3390/ijerph15061105.10.3390/ijerph15061105602542329844273
  34. [34] Shetekauri S, Chaligava O, Shetekauri T, Kvlividze A, Kalabegishvili T, Kirkesali E, et al. Biomonitoring air pollution using moss in Georgia. Polish J Environ Stud. 2018;27(5):2259-66. DOI: 10.15244/pjoes/73798.10.15244/pjoes/73798
  35. [35] Świsłowski P, Kosior G, Rajfur M. The influence of preparation methodology on the concentration of heavy metals in Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Environ Sci Pollut Res. 2021;28(8):10068-76. DOI: 10.1007/s11356-020-11484-7.10.1007/s11356-020-11484-7788437433161519
  36. [36] iCE 3000 Series AA Spectrometers Operators Manuals. Cambridge: Thermo Fisher Scientific, 2011. Available from: http://photos.labwrench.com/equipmentManuals/9291-6306.pdf.
  37. [37] Gerdol R, Marchesini R, Iacumin P, Brancaleoni L. Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors. Chemosphere. 2014;108:388-95. DOI: 10.1016/j.chemosphere.2014.02.035.10.1016/j.chemosphere.2014.02.03524630254
DOI: https://doi.org/10.2478/eces-2021-0012 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 163 - 172
Published on: Jul 23, 2021
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Nikola Słonina, Paweł Świsłowski, Małgorzata Rajfur, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.