Have a personal or library account? Click to login
Quantifying Urban Vegetation Coverage Change with a Linear Spectral Mixing Model: A Case Study in Xi’an, China Cover

Quantifying Urban Vegetation Coverage Change with a Linear Spectral Mixing Model: A Case Study in Xi’an, China

By: Xuan Zhao and  Jianjun Liu  
Open Access
|Apr 2021

References

  1. [1] Li X, Li T, Li H, Qi J, Hu L. Research on the online consumption effect of China’s urbanization under population aging background. Sustainability. 2019;11:4349. DOI: 10.3390/su11164349.10.3390/su11164349
  2. [2] Elhoseny H, Elhoseny M, Riad AM, Hassanien AE. A framework for big data analysis in smart cities. Int Conf Adv Machine Learning Technol Appl. 2018;723:405-14. DOI: 10.1007/978-3-319-74690-6_40.10.1007/978-3-319-74690-6_40
  3. [3] Lv Z, Hu B, Lv H. Infrastructure monitoring and operation for smart cities based on IoT system. IEEE Trans Industrial Informatics. 2019;16:1957-62. DOI: 10.1109/TII.2019.2913535.10.1109/TII.2019.2913535
  4. [4] Richards DR, Belcher RN. Global changes in urban vegetation cover. Remote Sens. 2020;12(1):23. DOI: 10.3390/rs12010023.10.3390/rs12010023
  5. [5] Deska I, Mrowiec M, Ociepa E, Michniewski M. Impact of the hydrogel amendment and the dry period duration on the green roof retention capacity. Ecol Chem Eng S. 2020;27:357-71. DOI: 10.2478/eces-2020-0023.10.2478/eces-2020-0023
  6. [6] Gdela M, Widomski MK, Musz-Pomorska A. Hydraulic efficency of selected intensive green roof substrates. Ecol Chem Eng A. 2019;26(1-2):37-45. DOI: 10.2428/ecea.2019.26(1-2)4.
  7. [7] Tsai SB. Wang K. Using a novel method to evaluate the performance of human resources in green logistics enterprises. Ecol Chem Eng S. 2019;26(4):629-40. DOI: 10.1515/eces-2019-0045.10.1515/eces-2019-0045
  8. [8] Oh RRY, Richards DR, Yee ATK. Community-driven skyrise greenery in a dense tropical city provides biodiversity and ecosystem service benefits. Landscape Urban Planning. 2018;169:115-23. DOI: 10.1016/j.landurbplan.2017.08.014.10.1016/j.landurbplan.2017.08.014
  9. [9] Meng XY, Gao X, Li SY, Lei JQ. Spatial and temporal characteristics of vegetation NDVI changes and the driving forces in Mongolia during 1982-2015. Remote Sens. 2020;12:603-28. DOI: 10.3390/rs12040603.10.3390/rs12040603
  10. [10] Voorde TVD. Spatially explicit urban green indicators for characterizing vegetation cover and public green space proximity: a case study on Brussels, Belgium. Int J Digital Earth. 2017;10:798-813. DOI:10.1080/17538947.2016.1252434.10.1080/17538947.2016.1252434
  11. [11] Elhoseny M. Multi-object detection and tracking (MODT) machine learning model for real-time video surveillance systems. Circuits Systems Signal Processing. 2020;39:611-30. DOI: 10.1007/s00034-019-01234-7.10.1007/s00034-019-01234-7
  12. [12] Du JQ, Zhao CX, Shu JM, Jiaerheng A, Yuan XJ, Yin JQ, et al. Spatiotemporal changes of vegetation on the Tibetan Plateau and relationship to climatic variables during multiyear periods from 1982-2012. Environ Earth Sci. 2016;75:77. DOI:10.1007/s12665-015-4818-4.10.1007/s12665-015-4818-4
  13. [13] Li ZH, Gao W, Gao ZQ, Shi RH, Liu CH. A study on assessment of urbanization and ecosystem changes based on MODIS time series in Shanghai municipality from 2000 to 2009. Proc SPIE. 2010;7809:78090R. DOI: 10.1117/12.858605.10.1117/12.858605
  14. [14] Liu T, Yang XJ. Monitoring Urban Growth and Land Changes in Beijing, China’s Capital City by Remote Sensing: Progress and Challenges: An Interdisciplinary Perspective. In: Challenges Towards Ecological Sustainability in China. 2019:55-67. DOI: 10.1007/978-3-030-03484-9_4.10.1007/978-3-030-03484-9_4
  15. [15] Hussein SO. Monitoring urban greenness evolution using multitemporal Landsat imagery in the city of Erbil (Iraq). Central European Geol. 2018;62:1-12. DOI: 10.1556/24.61.2018.10.10.1556/24.61.2018.10
  16. [16] Lv Z. The security of Internet of drones. Computer Commun. 2019;148:208-14. DOI: 10.1016/j.comcom.2019.09.018.10.1016/j.comcom.2019.09.018
  17. [17] Liang HL, Li WZ, Zhang QP, Zhu W, Chen D, Liu J, et al. Using unmanned aerial vehicle data to assess the three-dimension green quantity of urban green space: A case study in Shanghai, China. Landscape Urban Planning. 2017;164:81-90. DOI: 10.1016/j.landurbplan.2017.04.006.10.1016/j.landurbplan.2017.04.006
  18. [18] Hashim H, Abd Latif Z, Adnan NA. Urban vegetation classification with NDVI thresold value method with very high resolution (VHR) PLEIADES Imagery. Int Arch Photogramm. Remote Sens Spat Inf Sci. 2019;237-40. DOI: 10.5194/isprs-archives-XLII-4-W16-237-2019.10.5194/isprs-archives-XLII-4-W16-237-2019
  19. [19] Rwanga S, Ndambuki J. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int J Geosci. 2017;8:611-22. DOI: 10.4236/ijg.2017.84033.10.4236/ijg.2017.84033
  20. [20] Kussul N, Lavreniuk M, Skakun S, Shelestov A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci Remote Sensing Lett. 2017;14:778-82. DOI: 10.1109/LGRS.2017.2681128.10.1109/LGRS.2017.2681128
  21. [21] Ramasamy B, Yeung MCH. China’s one belt one road initiative: The impact of trade facilitation versus physical infrastructure on exports. World Econ. 2019;42:1673-94. DOI: 10.1111/twec.12808.10.1111/twec.12808
  22. [22] National Development and Reform Commission of the People’s Republic of China. Notice of the National Development and Reform Commission and the Ministry of Housing and Urban-Rural Development on Printing and Distributing the Development Plan of the Guanzhong Plain Urban Agglomeration. 2018. No. 220. Available from: http://www.ndrc.gov.cn/zcfb/zcfbtz/201802/t20180207_876904.html.
  23. [23] John AR. Remote Sensing Digital Image Analysis. 2013. ISBN: 9783642300615. DOI: 10.1007/978-3-642-30062-2.10.1007/978-3-642-30062-2
  24. [24] Xie YC, Sha ZY, Yu M. Remote sensing imagery in vegetation mapping: a review. J Plant Ecol. 2008;1:6240-52. DOI: 10.1093/jpe/rtm005.10.1093/jpe/rtm005
  25. [25] Quast R, Albergel C, Calvet JC, Wagner W. A generic first-order radiative transfer modelling approach for the inversion of soil and vegetation parameters from scatterometer observations. Remote Sens. 2019;11:285. DOI: 10.3390/rs11030285.10.3390/rs11030285
  26. [26] Wang J, Du Y, Liu Z, Cheng H. Determining diagnostic indicators for fine-scale short vegetation aboveground biomass inversion using a HVRU-based analysis approach. Ecol Indicators. 2020;111:106033. DOI: 10.1016/j.ecolind.2019.106033.10.1016/j.ecolind.2019.106033
  27. [27] Zanotta DC, Haertel V, Shimabukuro YE, Renno CD. Linear spectral mixing model for identifying potential missing endmembers in spectral mixture analysis. IEEE Trans Geosci Remote Sens. 2013;52:3005-12. DOI: 10.1109/TGRS.2013.2268539.10.1109/TGRS.2013.2268539
  28. [28] Li H, Lei J, Wu J. Evolution analysis of vegetation cover under the disturbance of rare earth mining: a case in Lingbei mining area. J Appl Sci Eng. 2017;20:393-400. DOI: 10.6180/jase.2017.20.3.14.
  29. [29] Adami M, Bernardes S, Arai E, Freitas RM, Shimabukuro YE, Espírito-Santo FDB, et al. Seasonality of vegetation types of South America depicted by moderate resolution imaging spectroradiometer (MODIS) time series. Int J Appl Earth Observation Geoinform. 2018;69:148-63. DOI: 10.1016/j.jag.2018.02.010.10.1016/j.jag.2018.02.010
  30. [30] Fassoni-Andrade AC, Zanotta DC, Guasselli LA, Andrade AM. Linear spectral mixing model for estimating optically active components in estuarine waters of Patos Lagoon, Brazil. Int J Remote Sens. 2017;38:4767-81. DOI: 10.1080/01431161.2017.1323281.10.1080/01431161.2017.1323281
  31. [31] Li C, Liu P, Zou C, Sun F, Cioffi JM. Yang L. Spectral-efficient cellular communications with coexistent one-and two-hop transmissions. IEEE Trans Vehicular Technol. 2015;65:6765-72. DOI: 10.1109/TVT.2015.2472456.10.1109/TVT.2015.2472456
  32. [32] Dong Di, Wang Di. Comparisons of ERDAS and ENVI in thematic mapping. 2011 IEEE 3rd Int Conf Communication Software Networks. 2011. DOI: 10.1109/ICCSN.2011.6014623.10.1109/ICCSN.2011.6014623
  33. [33] Ran P, Eyal BD. Assessing the detection limit of petroleum hydrocarbon in soils using hyperspectral remote-sensing. Remote Sensing Environ. 2019;224:145-53. DOI: 10.1016/j.rse.2019.01.026.10.1016/j.rse.2019.01.026
  34. [34] Kumar C, Chatterjee S, Oommen T. Mapping hydrothermal alteration minerals using high-resolution AVIRIS-NG hyperspectral data in the Hutti-Maski gold deposit area, India. Int J Remote Sens. 2020;41:794-812. DOI: 10.1080/01431161.2019.1648906.10.1080/01431161.2019.1648906
  35. [35] Zhao Y, Yang C. Information fusion robust guaranteed cost Kalman estimators with uncertain noise variances and missing measurements. Int J Systems Sci. 2019;50:2853-69. DOI: 10.1080/00207721.2019.1690719.10.1080/00207721.2019.1690719
  36. [36] Bian JH, Li AN, Zhang ZJ, Zhao W, Lei GB, Yin GF, et al. Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember selection LSMM model. Remote Sensing Environ. 2017;197:98-114. DOI: 10.1016/j.rse.2017.05.031.10.1016/j.rse.2017.05.031
  37. [37] Zhang J, Liu Y, Zhou DM, Zhang Q, Chen WN. Spatial-temporal character of vegetation cover and its influence factors in the Shule River Basin China, during 1985-2011. Human Ecol Risk Assess: Int J. 2020;26:608-20. DOI: 10.1080/10807039.2018.1528437.10.1080/10807039.2018.1528437
  38. [38] Peng J, Liu YH, Shen H, Han YN, Pan YJ. Vegetation coverage change and associated driving forces in mountain areas of Northwestern Yunnan, China using RS and GIS. Environ Monit Assess. 2012;184:4787-98. DOI: 10.1007/s10661-011-2302-5.10.1007/s10661-011-2302-521912871
  39. [39] Liu X, Zhou W, Bai Z. Vegetation coverage change and stability in large open-pit coal mine dumps in China during 1990-2015. Ecol Eng. 2016;95:447-51. DOI: 10.1016/J.ECOLENG.2016.06.051.10.1016/j.ecoleng.2016.06.051
  40. [40] Zhao K, Jin BX, Fan H, Song WW, Zhou SY, Jiang YY. High-performance overlay analysis of massive geographic polygons that considers shape complexity in a cloud environment. Int J Geo-Information. 2019;8:290. DOI: 10.3390/ijgi8070290.10.3390/ijgi8070290
  41. [41] Yan LB, He RX, Kašanin-Grubin M, Luo G, Peng H, Qiu JX. The dynamic change of vegetation cover and associated driving forces in Nanxiong Basin, China. Sustainability. 2017;9:443. DOI: 10.3390/su9030443.10.3390/su9030443
  42. [42] Liu SY, Huang SZ, Xie YY, Wang H, Huang Q, Leng GY, et al. Spatial-temporal changes in vegetation cover in a typical semi-humid and semi-arid region in China: Changing patterns, causes and implications. Ecol Indicators. 2019;98:462-75. DOI: 10.1016/j.ecolind.2018.11.037.10.1016/j.ecolind.2018.11.037
  43. [43] Du JQ, Fu Q, Fang SF, Wu JH, He P, Quan ZJ. Effects of rapid urbanization on vegetation cover in the metropolises of China over the last four decades. Ecol Indicators. 2019;107:105458. DOI: 10.1016/j.ecolind.2019.105458.10.1016/j.ecolind.2019.105458
  44. [44] Yang Z, Song J, Cheng D, Xia J, Li Q, Ahamad MI. Comprehensive evaluation and scenario simulation for the water resources carrying capacity in Xi’an city, China. J Environ Manage. 2019;230:221-33. DOI: 10.1016/j.jenvman.2018.09.085.10.1016/j.jenvman.2018.09.08530290309
DOI: https://doi.org/10.2478/eces-2021-0008 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 87 - 100
Published on: Apr 23, 2021
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Xuan Zhao, Jianjun Liu, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.