Have a personal or library account? Click to login
Benefit Evaluation of Energy-Saving and Emission Reduction in Construction Industry Based on Rough Set Theory Cover

Benefit Evaluation of Energy-Saving and Emission Reduction in Construction Industry Based on Rough Set Theory

Open Access
|Apr 2021

References

  1. [1] Zhang H, Chen J, Li Y, Seiler MJ. Does the Development of China’s Building Industry Influence the Global Energy Consumption and Carbon Emissions? an Analysis Based on the GVAR Model. Singapore: Springer; 2018. DOI: 10.1007/978-981-10-6190-5_58.10.1007/978-981-10-6190-5_58
  2. [2] Governments, USaC. U.S.-China Joint Announcement on Climate Change. 2014. Available from: https://obamawhitehouse.archives.gov/the-press-office/2014/11/11/us-china-joint-announcement-climate-change.
  3. [3] Jiang J, Ye B, Liu J. Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research. Renew Sust Energy Rev. 2019;112:813-33. DOI: 10.1016/j.rser.2019.06.024.10.1016/j.rser.2019.06.024
  4. [4] IPCC (2008). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available from: https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/.
  5. [5] IPCC (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available from: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/.
  6. [6] Lin BQ, Xu B. Growth of industrial CO2 emissions in Shanghai city: Evidence from a dynamic vector autoregression analysis. Energy Oxford. 2018;151:167-77. DOI: 10.1016/j.energy.2018.03.052.10.1016/j.energy.2018.03.052
  7. [7] Wen L, Zhang X. CO2 emissions in China’s Yangtze River Economic Zone: A dynamic vector autoregression approach. Pol J Environ Stud. 2019;28:923-33. DOI: 10.15244/pjoes/83668.10.15244/pjoes/83668
  8. [8] Xu B, Lin BQ. What cause a surge in China’s CO2 emissions? A dynamic vector autoregression analysis. J Clean Prod. 2016;143:17-26. DOI: 10.1016/j.jclepro.2016.12.159.10.1016/j.jclepro.2016.12.159
  9. [9] Xu B, Lin BQ. Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model. Appl Energy. 2016;161:357-86. DOI: 10.1016/j.apenergy.2015.10.039.10.1016/j.apenergy.2015.10.039
  10. [10] Hao H, Geng Y, Li W, Guo B. Energy consumption and GHG emissions from China’s freight transport sector: Scenarios through 2050. Energy Policy. 2015;85:94-101. DOI: 10.1016/j.enpol.2015.05.016.10.1016/j.enpol.2015.05.016
  11. [11] Shao S, Liu J, Geng Y, Miao Z, Yang Y. Uncovering driving factors of carbon emissions from China’s mining sector. Appl Energy. 2016;166:220-38. DOI: 10.1016/j.apenergy.2016.01.047.10.1016/j.apenergy.2016.01.047
  12. [12] Huang WL, Yin X, Chen WY. Prospective scenarios of CCS implementation in China’s power sector: An analysis with China TIMES. Energy Procedia. 2014;61:937-40. DOI: 10.1016/j.egypro.2014.11.999.10.1016/j.egypro.2014.11.999
  13. [13] Lin B, Moubarak M, Ouyang XL. Carbon dioxide emissions and growth of the manufacturing sector: Evidence for China. Energy. 2014;76:830-7. DOI: 10.1016/j.energy.2014.08.082.10.1016/j.energy.2014.08.082
  14. [14] Shi Q, Chen J, Shen L. Driving factors of the changes in the carbon emissions in the Chinese construction industry. J Clean Prod. 2017;(166):615-27. DOI: 10.1016/j.jclepro.2017.08.056.10.1016/j.jclepro.2017.08.056
  15. [15] Yang T, Pan Y, Yang Y, Lin M, Qin B, Xu P, et al. CO2 emissions in China’s building sector through 2050: A scenario analysis based on a bottom-up model. Energy. 2017;128:208-23. DOI: 10.1016/j.energy.2017.03.098.10.1016/j.energy.2017.03.098
  16. [16] Ai F, Yin X, Hu R, Ma H, Liu W. Research into the super-absorbent polymers on agricultural water. Agr Water Manage. 2021:106513. DOI: 10.1016/j.agwat.2020.106513.10.1016/j.agwat.2020.106513
  17. [17] Zhang X, Zang C, Ma H, Wang Z. Study on removing calcium carbonate plug from near wellbore by high-power ultrasonic treatment. Ultrason Sonochem. 2020:104515. DOI: 10.1016/j.ultsonch.2019.03.006.10.1016/j.ultsonch.2019.03.00631753547
  18. [18] Mo L, Sun W, Jiang S, Zhao X, Ma H, Liu B, et al. Removal of colloidal precipitation plugging with high-power ultrasound. Ultrason Sonochem. 2020;69:105259. DOI: 10.1016/j.ultsonch.2020.105259.10.1016/j.ultsonch.2020.10525932738455
  19. [19] Liu W, Ma H, Walsh A. Advance in photonic crystal solar cells. Renew Sust Energy Rev. 2019;116:109436. DOI: 10.1016/j.rser.2019.109436.10.1016/j.rser.2019.109436
  20. [20] Ma H, Zhang X, Ju F, Tsai SB. A study on curing kinetics of nano-phase modified epoxy resin. Sci Rep. 2018;8. DOI: 10.1038/s41598-018-21208-0.10.1038/s41598-018-21208-0581301729445228
  21. [21] Ma H, Tsai SB. Design of research on performance of a new iridium coordination compound for the detection of Hg2+. Int J Env Res Pub HE. 2017;14. DOI: 10.3390/ijerph14101232.10.3390/ijerph14101232566473329035349
  22. [22] Yang G, He XL, Li JF, Jia XJ. The research of water resource sustainable utilization in Manas River. Acta Ecologica Sinica. Available from: https://www.oalib.com/paper/1402574.
  23. [23] Gendron C. Beyond environmental and ecological economics: Proposal for an economic sociology of the environment. Ecol Econ. 2014;105:240-53. DOI: 10.1016/j.ecolecon.2014.06.012.10.1016/j.ecolecon.2014.06.012
  24. [24] Men B, Liu H, Tian W, Liu H. Evaluation of sustainable use of water resources in Beijing based on rough set and fuzzy theory. Water. 2017;9:852. DOI: 10.3390/w10070925.10.3390/w10070925
  25. [25] Wu X, Wen QB, Hu LM, Liu MY. Evaluation of unconventional water resources based on knowledge granularity. E3S Web Conf. 2020;144(1-3):01004. DOI: 10.1051/e3sconf/202014401004.10.1051/e3sconf/202014401004
  26. [26] Pawlak Z. Rough sets. Int J Comput Inform Sci. 1982;11:341-56. DOI: 10.1007/BF01001956.10.1007/BF01001956
  27. [27] Pawlak Z. Rough classification. Int J Man Mach Stud. 1984;20:469-83. DOI: 10.1016/S0020-7373(84)80022-X.10.1016/S0020-7373(84)80022-X
  28. [28] Pawlak Z. Rough sets and intelligent data analysis. Inform Sci. 2002;147:1-12. DOI: 10.1016/S0020-0255(02)00197-4.10.1016/S0020-0255(02)00197-4
  29. [29] Pawlak Z, Skowron A. Rough sets: Some extensions. Inform Sci. 2007;177:28-40. DOI: 10.1016/j.ins.2006.06.006.10.1016/j.ins.2006.06.006
DOI: https://doi.org/10.2478/eces-2021-0006 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 61 - 73
Published on: Apr 23, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Zhengjun Zhong, Xin Zhang, Xudong Yang, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.