Have a personal or library account? Click to login
Mobile Gas Chromatographs Coupled with Mass and Ion Mobility Spectrometers and their Applications Cover

Mobile Gas Chromatographs Coupled with Mass and Ion Mobility Spectrometers and their Applications

Open Access
|Apr 2021

References

  1. [1] Gałuszka A, Migaszewski ZM, Namieśnik J. Moving your laboratory to the field - advantages and limitations of the use of field-portable instruments in environmental sample analysis. Environ Res. 2015;140:593-603. DOI: 10.1016/j.envres.2015.05.017.10.1016/j.envres.2015.05.01726051907
  2. [2] Witkiewicz Z, Wardencki W. Transportable, portable and micro gas chromatographs. Anal Chem: Indian J. 2019;19:1-12. DOI:10.37532/0974-7419.2019.19(1).142.
  3. [3] Qu H, Duan X. Recent advances in micro detectors for micro gas chromatography. Sci China Mater. 2019;62(5):611-23. DOI: 10.1007/s40843-018-9389-0.10.1007/s40843-018-9389-0
  4. [4] Makas AL, Troshkov ML. Field gas chromatography-mass spectrometry for fast analysis. J Chrom B. 2004;800:55-61. DOI: 10.1016/j.jasms.2008.06.0.
  5. [5] Li L, Chen T, Ren Y, Hendricks PI, Cooks RG, Quyang Z. Mini 12, miniature mass spectrometer for clinical and other applications - Introduction and characterization. Anal Chem. 2014;86:2909-16. DOI: 10.1021/ac403766c.10.1021/ac403766c398569524521423
  6. [6] Snyder D, Pulliam C, Quyang Z, Cooks R. Miniature and fieldable mass spectrometers. Anal Chem. 2016;88(1):2-29. DOI: 10.1021/acs.analchem.5b03070.10.1021/acs.analchem.5b03070536403426422665
  7. [7] Sanders NL, Kothari S, Huang G, Salazar G, Cooks RG, Detection of explosives as negative ions directly from surfaces using a miniature mass spectrometer. Anal Chem. 2010; 82(12):5313-6. DOI: 10.1021/ac1008157.10.1021/ac100815720496904
  8. [8] McBride EM, Mach PM, Dhummakupt ES, Dowling S, Carmay DO, Demond PS, et al. Paper spray ionization: Applications and perspectives. Trends Anal Chem. 2019;118:722-30. DOI: 10.1016/j.trac.2019.06.028.10.1016/j.trac.2019.06.028
  9. [9] Xiao Y, Deng J, Yao Y, Fang L, Yang Y, Luan T. Recent advances of ambient mass spectrometry imaging for biological tissues: A review. Anal Chim Acta. 2020;1117:74-88. DOI: 10.1016/j.aca.2020.01.052.10.1016/j.aca.2020.01.05232408956
  10. [10] Lammert SA, Rockwood AA, Wang M, Lee M, Lee ED, Tolley SE, et al. Miniature toroidal frequency ion trap mass analyzer. J. Am Soc Mass Spectrom. 2006;17:916-22. DOI: 10.1016/j.jasms.2006.02.009.10.1016/j.jasms.2006.02.00916697659
  11. [11] Contreras JA, Murray JA, Tolley SE, Oliphant JL, Tolley HD, Lammert SA, et al. Hand-portable gas chromatograph-toroidal ion trap mass spectrometer for detection of hazardous compounds. J Am Soc Mass Spectrom. 2008;19:1425-34. DOI: 10.1016/j.jasms.2008.06.022.10.1016/j.jasms.2008.06.02218672381
  12. [12] Guo Q, Gao L, Zhai Y, Xu W. Recent developments of miniature ion trap mass spectrometers. Chin Chem. Letters. 2018;29:1578-84. DOI: 10.1016/j.cclet.2017.12.009.10.1016/j.cclet.2017.12.009
  13. [13] Quyang Z, Cooks RG. Miniature mass spectrometer. Ann Rev Anal Chem. 2009;2:187-214. DOI: 10.1146/annurev-anchem-060908-155229.10.1146/annurev-anchem-060908-15522920636059
  14. [14] Meng X, Zhang X, Zhai Y, Xu W. Mini 2000: a robust miniature mass spectrometer with continuous atmospheric pressure interface. Instruments. 2018;2. DOI: 2,210.3390/instruments2010002.
  15. [15] Hamilton SE, Mattrey F, Bu X, Murray D, McCullough B, Welch CJ. Use of miniature mass spectrometer to support pharmaceutical process chemistry. Org Process Res Develop. 2014;18:103-8. DOI: 1021/op400253x.10.1021/op400253x
  16. [16] Mielczarek P, Silbering J, Smoluch M. Miniaturization in mass spectrometry. Mass Spectrom Rev. 2020;39(5-6):453-70. DOI: 10.1002/mas.21614.10.1002/mas.2161431793697
  17. [17] Cumeras R, Figueras E, Davis CE, Baumbach JI, Gracia J. Review on ion mobility spectrometry. Part 1: Current instrumentation. Analyst. 2015;140:1376-90. DOI: 10.1039/c4an01100g.10.1039/C4AN01100G433121325465076
  18. [18] Cumeras R, Figueras E, Davis CE, Baumbach JI, Gracia J. Review on ion mobility spectrometry. Part 2: Hyphenated methods and effects of experimental parameters. Analyst. 2015;140:1391-410. DOI: 10.1039/c4an01100g. Analyst. 2015; 140:1391-1410. DOI: 10.1039/c4an01101e.10.1039/C4AN01101E433124425465248
  19. [19] Eiceman GA, Karpas Z, Hill HH Jr. Ion Mobility Spectrometry. 3rd ed. Boca Raton: Taylor Francis; 2013. ISBN: 9781439859971.10.1201/b16109
  20. [20] Puton J, Namieśnik J. Ion mobility spectrometry. Trends Anal Chem. 2016;85:10-20. DOI: 10.1016/j.trac.2016.06.002.10.1016/j.trac.2016.06.002
  21. [21] Satoh T, Kishi TS, Nagashima H, Tachikawa M, Kanamori-Kataoka M, Nakagawa T, et al. Ion mobility spectrometric analysis of vapours chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation. Anal Chim Acta. 2015;865:39-52. DOI: 10.1016/j.aca.2015.02.004.10.1016/j.aca.2015.02.00425732583
  22. [22] Kanu AB, Hill HH Jr. Ion mobility for gas chromatography. J Chromatogr A. 2008;1177;12-27. DOI: 10.1016/j.chroma.2007.10.110.10.1016/j.chroma.2007.10.11018067900
  23. [23] Ahrens A, Hitzemann, Zimmermann S. Miniaturized high-performance drift-tube ion mobility spectrometer. J Ion Mobil Spectrom. 2019;22:77-83. DOI: 10.1007/s12127-019-00248-w.10.1007/s12127-019-00248-w
  24. [24] Schneider BB, Nazarov EG, Londry F, Vouros FP, Covey TR. Differential mobility spectrometry/mass spectrometry, history, theory, design optimization, simulations, and applications. Mass Spectrom Rev. 2015;34:687-737. DOI: 10.1002/mas.21453.10.1002/mas.21453
  25. [25] Cohen MJ, Karasek FW. Plasma chromatography – a new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci. 1970;8(6):330-7. DOI: 10.1093/chromsci/8.6.330.10.1093/chromsci/8.6.330
  26. [26] Aguilera-Herradora E, Cardenasa S, Ruzsanyi V, Sielemann S, Varcalcel M. Evaluation of a new miniaturized ion mobility spectrometer and its coupling to fast chromatography multi-capillary columns. J Chromatogr A. 2008;1214:143-50. DOI: 10.1016/j.chroma.2008.10.050.10.1016/j.chroma.2008.10.050
  27. [27] Palmer PT, Limero TF. J Am Soc Mass Spectrom. 2001;12:656-76. DOI: 10.1016/S1044-0305(01)00249-5.10.1016/S1044-0305(01)00249-5
  28. [28] Grabka M, Żukowski P, Witkiewicz Z. Zastosowanie chromatografii gazowej w pozaziemskich misjach badawczych (Application of gas chromatography in extraterrestrial research missions). Aparat Bad Dydakt. 2012;17:69-77.
  29. [29] Hofer L, Wurz P, Buch A, Cabane M, Cool P, Coscia D, et al. Planet Space Sci. 2015;111:126-33. DOI: 10.1016/j.pss.2015.03.027.10.1016/j.pss.2015.03.027
  30. [30] Gorder KA, Dettenmaier ME. Groundwat Monit Remed. 2011;31:113-9. DOI: 10.1111/j.1745-6592.2011.01357.x.10.1111/j.1745-6592.2011.01357.x
  31. [31] Eckenrode BA. Environmental and forensic application of field-portable GC-MS: An overview. J Am Soc Mass Spectrom. 2001;12(6):683-93. DOI: 10.1016/S1044-0305(01)00251-3.10.1016/S1044-0305(01)00251-3
  32. [32] Ochiai N, Sasamoto K. Screening of pesticide residues in water by sequential stir bar sorptive extraction-thermal desorption with GC/MSD. Appl Note Agilent Technol. 2010.
  33. [33] Leary PE, Kammrath BW, Lattman KJ, Beals GL. Deploying portable gas chromatography-mass spectrometry to military users for the identification of toxic chemical agents in theatre. Appl Spectrosc. 2019;73:841-58. DOI: 10.1177/0003702819849499.10.1177/000370281984949931008649
  34. [34] Sekiguchi H, Matsushita K, Yamashiro S, Sano Y, Seto Y, Okuda T, et al. On-site determination of nerve and mustard gases using a field-portable gas chromatograph-mass spectrometer. Forensic Toxic. 2006;24:17-22. DOI: 10.1007/s11419-006-0004-4.10.1007/s11419-006-0004-4
  35. [35] Bednar AJ, Russell AL, Hayes CA, Jones WT, Tackett Splichal DE, Georgian T, et al. Chemosphere. 2012;87:894-901. DOI: 10.1016/j.chemosphere.2012.01.042.10.1016/j.chemosphere.2012.01.04222349064
  36. [36] Beck J, Porter N, Cook D, Gee WS, Griffith CM, Rands AD, et al. In-field volatile analysis employing a hand-held portable gc-ms: emission profiles differentiate damaged and undamaged yellow starthistle flower heads. Phytochem Anal. 2015;26:395-403. DOI: 10.1002/pca.2573.10.1002/pca.257326095961
  37. [37] Limero T, Cheng P, Reese E, Trowbridge J. Results of the air quality monitor’s experiment to measure volatile organic compounds aboard the International Space Station. 40th Int Conf Environmental Systems, Barcelona, September 2010. URI: hdl.handle.net/2346/72986.10.2514/6.2010-6278
  38. [38] Limero T, Wallace W, James JT. Operational validation of the air quality monitor on the International Space Station. 44th Int Conf Environmental Systems, Tucson. July 2014. URI: hdl.handle.net/2346/72986.
  39. [39] Limero T, Nazarov EG, Menlyadiev M, Eiceman GA. Analyst. 2015;140:922-30. DOI: 10.1039/C4AN01800A.10.1039/C4AN01800A
  40. [40] Caygill JS, Davis F, Higson SP. Current trends in explosive detection techniques. Talanta. 2012;88:80-8. DOI: 10.1016/j.talanta.2011.11.043.10.1016/j.talanta.2011.11.04322265465
  41. [41] Cook GW, LaPuma PT, Hook GL, Eckenrode BA. J Forensic Sci. 2010;55:1582-91. DOI: 10.1111/j.1556-4029.2010.01522.x.10.1111/j.1556-4029.2010.01522.x20735708
  42. [42] Kwan C, Snyder AP, Erickson RP, Maswadeh PA, Ayhan B, Jensen JL, et al. IEEE Sensors J. 2010;10:451-60.10.1109/JSEN.2009.2038128
  43. [43] Erickson RP, Tripathi A, Maswadeh WM, Snyder AP, Smith PA. Closed tube introduction for gas chromatography-ion mobility spectrometry analysis of water contaminated with a chemical warfare agent surrogate compound. Anal Chim Acta. 2006;556:455-61. DOI: 10.1016/j.aca.2005.09.031.10.1016/j.aca.2005.09.031
  44. [44] Cavanna D, Zanardi S, Dall’Asta C, Suman M. Food Chem. 2019;15:691-6. DOI: 10.1016/j.foodchem.2018.07.204.10.1016/j.foodchem.2018.07.20430236732
  45. [45] Reyes-Garces N, Gomez-Rios GA, Souza Silwa EA, Pawliszyn J. Coupling needle-trap devices with gas chromatography-ion mobility spectrometry detection as a simple approach for on-site quantitative analysis. J Chromatogr A. 2013;1300:193-8. DOI: 10.1016/j.chroma.2013.05.042.10.1016/j.chroma.2013.05.04223768538
DOI: https://doi.org/10.2478/eces-2021-0003 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 29 - 37
Published on: Apr 23, 2021
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Zygfryd Witkiewicz, Waldemar Wardencki, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.