Have a personal or library account? Click to login
Seasonal Dynamics of Catalase Activity in Cystoseira crinita (Black Sea) and Fucus vesiculosus (Barents Sea) Cover

Seasonal Dynamics of Catalase Activity in Cystoseira crinita (Black Sea) and Fucus vesiculosus (Barents Sea)

By: Olga Shakhmatova and  Inna Ryzhik  
Open Access
|Jan 2021

References

  1. [1] Milchakova N. Marine Plants of the Black Sea. An Illustrated Field Guide. Sevastopol: DigitPrint; 2011. ISBN: 9789660258013. Available from: https://core.ac.uk/download/pdf/226085389.pdf.10.21072/978-966-02-5801-3
  2. [2] Makarov MV, Ryzhik IV, Voskoboinikov GM. The effect of Fucus vesiculosus L. (Phaeophyceae) depth of vegetation in the Barents Sea (Russia) on its morphophysiological parameters. Int J Algae. 2013;15.1:77-90. DOI: 10.1615/InterJAlgae.v15.i1.60.10.1615/InterJAlgae.v15.i1.60
  3. [3] Shakhmatova OA, Milchakova NA. Effect of environmental conditions on Black sea macroalgae catalase activity. Int J Algae. 2014;16.4:377-91. DOI: 10.1615/InterJAlgae.v16.i4.70.10.1615/InterJAlgae.v16.i4.70
  4. [4] Willekens H, Inzé D, Van Montagu M, van Camp W. Catalases in plants. Mol Breeding. 1995;1:207-28. DOI: 10.1007/BF02277422.10.1007/BF02277422
  5. [5] Lesser MP. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol. 2006;68:253-78. DOI: 10.1146/annurev.physiol.68.040104.110001.10.1146/annurev.physiol.68.040104.110001
  6. [6] Ryzhik IV. Seasonal changes in the metabolic activity of cells of Fucus vesiculosus Linnaeus, 1753 (Phaeophyta: Fucales) from the Barents Sea. Russ J Marine Biol. 2018;42.5:433-36. DOI: 10.1134/S1063074016050102.10.1134/S1063074016050102
  7. [7] Shakhmatova OA, Kovardakov SA. The catalase activity of the red alga Ceramium virgatum Roth, 1797 as a marker of the quality of the marine environment based on the example of the coastal zone of southwestern Crimea. Russ J Marine Biol. 2019;45.6:436-42. DOI: 10.1134/S1063074019060087.10.1134/S1063074019060087
  8. [8] Milchakova NA. On the status of seagrass communities in the Black Sea. Aquatic Botany. 1999;65,4:21-31. DOI: 10.1016/S0304-3770(99)00028-5.10.1016/S0304-3770(99)00028-5
  9. [9] State report “On the State and Environmental Protection of the Russian Federation in 2017”. Murmansk; 2018. Available from: https://gov-murman.ru/region/environmentstate.
  10. [10] Malavenda SV. Macroalgaes flora of the Kola bay (the Barents sea). Bulletin Murmansk State Techn Univ. 2018;21:245-52. DOI:10.21443/1560-9278-2018-21-2-245-252.10.21443/1560-9278-2018-21-2-245-252
  11. [11] Ryzhik I, Pugovkin D, Makarov M, Basova L, Voskoboynikov G, Roleda MY. Tolerance of Fucus vesiculosus exposed to Diesel water-accommodated fraction (WAF) and degradation of hydrocarbons by the associated bacteria. Environ Pollut. 2019;254:113072. DOI: 10.1016/j.envpol.2019.113072.10.1016/j.envpol.2019.11307231454577
  12. [12] Aguilera J, Bischof K, Karsten U, Hanelt D, Wiencke C. Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. II. Pigment accumulation and biochemical defence systems against high light stress. Marine Biol. 2002;140:1087-95. DOI: 10.1007/s00227-002-0792-y.10.1007/s00227-002-0792-y
  13. [13] Yakovleva IM, Belotsitsenko ES. The antioxidant potential of dominant macroalgae species from the Sea of Japan. Russ J Marine Biol. 2017;43.5:407-18. DOI: 10.1134/S106307401705011X.10.1134/S106307401705011X
  14. [14] Baghdadli D, Tremblin G, Pellegrini M, Coudret A. Effects of environmental parameters on net photosynthesis of a free-living brown seaweed, Cystoseira barbata formarepens: determination of optimal photosynthetic culture conditions. J Appl Phycol. 1990;2:281-7. DOI: 10.1007/BF02179786.10.1007/BF02179786
  15. [15] Makarov MV. Adaptation of the light-harvesting complex of the Barents Sea brown seaweed Fucus vesiculosus L. to light conditions. Dokl Biol Sci. 2012;442.1:58-61. DOI: 10.1134/S0012496612010176.10.1134/S0012496612010176
  16. [16] Ryzhik IV, Fisak EM. Annual dynamics of the content of soluble phlorotannins in Fucus vesiculosus L. cells and their possible participation in tissue repair processes. Questions Modern Algology. 2018;1.16:4. Available from: http://algology.ru/1248.
  17. [17] Collén J, Davison I. Reactive oxygen metabolism in intertidal Fucus spp. (Phaeophyceae). J Appl Phycol. 1999;35:62-9. DOI: 10.1046/j.1529-8817.1999.3510054.x.10.1046/j.1529-8817.1999.3510054.x
  18. [18] Maharana D, Das PB, Verlecar XN, Pise NM, Gauns M. Oxidative stress tolerance in intertidal red seaweed Hypnea musciformis (Wulfen) in relation to environmental components. Environ Sci Pollut Res. 2015;22.23:18741-9. DOI: 10.1007/s11356-015-4985-6.10.1007/s11356-015-4985-6
  19. [19] Carlson L. Seasonal variation in growth, reproduction and nitrogen content of Fucus vesiculosus L. in the Öresund, Southern Sweden. Botanica Marina. 1991;34.5:447-53. DOI:10.1023/A:1004152001370.10.1023/A:1004152001370
  20. [20] Collén J, Davison I. Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Hondrus crispus. Plant Cell Environ. 1999;22:1143-51. DOI: 10.1046/j.1365-3040.1999.00477.x.10.1046/j.1365-3040.1999.00477.x
  21. [21] Maharana D, Jena K, Pise NM, Jagtap TG. Assessment of oxidative stress indices in a marine macro brown alga Padina tetrastromatica (Hauck) from comparable polluted coastal regions of the Arabian Sea, west coast of India. J Environ Sci. 2010;22.9:1413-7. DOI: 10.1016/S1001-0742(09)60268-0.10.1016/S1001-0742(09)60268-0
DOI: https://doi.org/10.2478/eces-2020-0041 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 643 - 650
Published on: Jan 29, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Olga Shakhmatova, Inna Ryzhik, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.